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Abstract. We extend the scattering approach to qnantize general Hamiltonian systems in two 
dimensions and demonstrate it for the wedge billiard. The resulting energy levels are given by 
the zeros of a secular equation. The corresponding wavefundons may also be commcted. We 
verify analflcally that this quantization condition is exact in the case of the integrable wedges. 
This method has been applied successfully to computing numerically a few thousand levels for 
various values of the angle. Using these data, we can check the Gutzwiller m e  formula and 
other semiclassical relations involving the scattering manix and periodic orbits, for which we 
find excellent agreement. 

1. Introduction 

Since its introduction some years ago, the scattering approach for quantization [l] has 
been used exclusively to quantize billiards, and for these systems it has proved to be a 
very convenient starting point for both analytical [ 2 4 ]  and numerical [5, 61 investigations. 
Recently, Eclrmann and Pillet [7] have proved a theorem which puts one of the versions of 
the scattering approach on a rigorous foundation. The main purpose of the present work 
is to show that the scattering approach can be extended quite easily to other systems with 
Hamiltonians of the form 

where r (p) are Euclidean coordinates (momenta) in the plane, and it is assumed that 
V ( r )  + CO for lr[ + 00. We shall show how one can construct two auxiliary scattering 
systems, in terms of which quantization is achieved. The main result is that here also, one 
can define a scattering mahix S(E), and determine the spectrum of the original problem by 
finding the energies E, at which the spectrum of S contains the eigenvalue 1. Once this is 
done, one can develop the semiclassical quantization using the same ideas and formalism as 
were used previously, and derive the semiclassical expression for the spectral density 181, 
the Gutzwiller Voros < function etc. 

We shall illustrate this formalism by quantizing a system which can be considered as 
intermediate between billiards and potential problems of type (1). This is the wedge billiard, 
which consists of two hard walls that meet at the origin y = - cot&)x and y = cot(j&)x 
(the angles are measured away from the y-axis). The motion is bounded by a potential 
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V(r) = y. The wedge billiard has a few important advantages: it is known that the classical 
dynamics are integrable, mixed or hyperbolic depending on the choice of the angles &.R. 
In the chaotic regime with +4~ - 0, the dynamics can be represented symbolically in terms 
of a binary code. This is of great help in identifying periodic orbits. The quantization 
of the wedge billiard was previously discussed by Wittek and others [9,10] and later by 
Szeredi e l  al [11-14]. This will enable us to compare the more familiar approach, which 
was previously followed, with the scattering approach which we pursued here. Last but 
not least, the Hamiltonian is sufficiently simple so that a large quantum database can be 
calculated. It allows a detailed investigation of the semiclassical approximation and the 
validity of various assumptions which are made when this approximation is derived. 

The paper is arranged in the following way. The first section describes the exact 
quantization procedure for a general Hamiltonian of the form (1). Once’this is done, we 
shall focus on the wedge billiard, and show how the S(E)-matrix is written explicitly in 
terms of integrals involving Airy functions. A good check is provided for the cases where 
DL + @’R = a/2 and DL = 0, PR =~ a/4. These wedge billiards are integrable, and we 
shall show explicitly that the scattering approach provides the exact energy levels. An 
important advantage of the scattering approach is that it offers a very efficient procedure 
for numerical quantization. This will be discussed in section 3, and the accuracy of the 
method will be studied in detail. The outcome of the numerical work consists of spectra 
of several thousands of levels each, which form an extensive database for further studies 
of the semiclassical approximation, which will be the subject of section 4. This section 
will start with a short r6sum6 of the derivation of the semiclassical approximation for the 
spectral density (Gutzwiller’s trace formula). In section 5, we test numerically the validity 
of the semiclassical approximations derived in the previous section. Finally, we discuss the 
possible extensions of this work in the last section. 
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2. Exact quantization 

We consider a two-dimensional system with Hamiltonian of type (1). where motion is 
bounded by the potential. Here we are looking for the square-integrable solutions W(x, y) 
of the stationary Schrijdinger equation (8 = 1) 

[-&a + V(x, y) - ~ E  Q(x ,  y) = 0 I (2)  

on R*. To solve this problem, we adapt a method based on scattering theory 111. 
First, we take a straight line r in the xy-plane. The method applies for an arbitrary r, 

but a sensible choice of the section will reduce the error of the semiclassical approximation. 
Performing an appropriate rotation of ihe coordinate system, we can always assume that r 
lies on the y-axis. Thus, it separates the original system into two independent left 0.) and 
right (R) scattering systems. The R system is formed by the potential on the right side of 
r, and its constant continuation on the left side (see figure 1): 

Hence motion in the y-direction is bounded by the potential, whereas motion in the x-  
direction is free for x < 0. The constant potential along the negative x-axis forms a 
‘waveguide’ in which the scattering process is defined. Similarly, we define the L system 
using the left part of the original system. The corresponding waveguide runs along the 
positive x-axis. The solutions of the R Q scattering system are solutions of the stationary 
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Figure 1. (a) Equipotential lines of the original Hamiltonian system. The section r is bken 
on the vertical axis. (b) Equipotential lines of the right (full curves) and lee mroken curves) 
scattering systems. 

Schrodinger equation  restricted^ to the left (right) side of the origin and the right (left) 
wavegide. In  the asymptotic region x 4 0 (x  > 0), such solutions may be written 

where the functions &(y) are channel or mode eigenfunctions with eigen-energies E[,  and 

The channel eigenfunctions &(y) are the solutions of the one-dimensional Schrodinger 
equation on r: 

As the potential is binding, the energy spectrum is discrete. The &’s provide an orthonormal 
basis of the Hilbert space of the one-dimensional problem. The waveguides are the same for 
the R and L problems. Note that when the exact solutions of (6) are not known analytically, 
one can still solve it in the WKB approximation, in ‘order to get a quantization condition 
which holds in the semiclassical regime. 

A channel 1 for which k, E Ik+ is called open andhe  corresponding modes travelling, 
since e*&% represents propagating wavefunctions. When kl E iR+, e’ikx is an increasing 
or decreasing exponential function. In that case, one says *at the channel 1 is closed 
and the mode evanescent. For potentials bounded from below, the number A ( E )  of open 
channels at fixed energy E is finite, whereas the number of closed channels is infinite. The 
functions e’klxdl(y) stand for wavefunctions travelling from x = -cc into the scattering 
system. We will call them incoming modes. Similarly, the functions e-ikl̂ q51(y) will be 
referred as outgoing modes. Thus, for m < A, the function represents a wave of energy 
E propagating from the left in the incoming open channel m, scattering against the right 
part of the potential and re-emitted with amplitude A‘:, in the various open and closed 
channels 1.  The wavefunctions with m > A do not correspond to propagating modes. 
They are usually neglected in the semiclassical approximation, since their contributions 
decrease exponentially in the asymptotic domain. Here we have to consider them, since the 
wavefunction is expanded on a complete basis on r. 
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We shall use the scattering functions $I: and $I; to construct an eigenfunction of the 
original Hamiltonian. As W has to satisfy the Schrodinger equation on the R and L sides 
of r, a good ansatz is a function defined by a linear combination of the @: in the region 
x 3 0, and a linear combination of the $I; in the region x < 0. Such a function does not 
exist for arbitrary values of the energy, since the wavefunctions of both decompositions and 
their n o m 1  derivatives (with respect to r) have to match at x = 0. Actually, this matching 
is the quantization condition. For this purpose we have to find two sets of coefficients U: 

and U:, m EN*, such that 

g u ~ e ~ ( x , y )  for x 2 o I:: g u i + ~ ( x , y )  for x $ 0  
Y(x, Y) = (7) 

and the values of both the R and the L decompositions of W and &W have to be matched 
at x = 0. Using the orthonormality of the functions 4/(y), this condition transforms into a 
system of linear equations 

m m 

i uiJiE; [a,! - sil] = i U:& [-a,/ + s;~] vi E W* 
m=1 m=l 

which is a set of homogeneous equations for the coefficients aR and aL. Using a matrix 
notation and remembering that scattering matrices are symmetric (see appendix A), we 
obtain the matching condition in the form 

(-G -")( n $ ) = O  

which admits a non-trivial solution if and only if 

Ker[I- S(E)] # 0 with S(E) = SL . SR. (10) 
Thus the system admits E as eigen-energy whenever S(E) has an eigenvalue f l .  Since 
each element of the kernel gives a different solution for the matching, the degeneracy simply 
corresponds to this number of elements. Furthermore, this quantization condition gives a 
constructive method to obtain not only the eigen-energies, but the wavefunction too. First, 
one has to look for a value of E such that (10) is satisfied. Then one solves (9) to obtain 
the coefficients of the decomposition (7). 

For symmetrical systems, it is also possible to determine the parity of the wavefunction. 
Consider a system for which the section r is a symmetry line with 

V ( x ,  y )  = V ( - x ,  y) vx E R .  (11) 

As both the R and the L scattering systems are identical, SR = SL. According to (lo), 
the system admits an eigenfunction of energy E each time SL. SR has an eigenvalue f l .  
Thus the symmetric system will have eigenfunctions for each eigenvalue f l  of SR. For 
this special case, the system (8) can be simplified and rewritten as 

[n f -aL) = o ~ [n - sR](uR + uL) = 0. (12) 
Assume S R ( E )  has an eigenvalue +I. The corresponding eigenvector (aR +aL) must also 
satisfy the other equation of the system, so that aR = uL. From (7). one deduces that 
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Figure 2. (a )  Original billiard system composed of hvo inclined sides. (b)  Right scattering 
system (full lines) composed of the right inclined side and a waveguide on Lhe negative x-axis. 
Left scattering system (broken lines) composed of the left inclined side and a waveguide on the 
positive x-axis. 

Y(x, y) = Y(-x, y), i.e. that the corresponding wavefunction is symmetric. Similarly, 
the eigenvalues -1 of SR(E)  lead to antisymmetric eigenhnctions verifying Y(x, y) = 
-Y(-x, Y). 

At this point we  depart from the general Hamiltonian (1) and consider the wedge billiard. 
This billiard consists of two walls (infinite potential barrier) along the lines y = - cot(BL)x 
and y = cot(,%& (see figure 2(u)) .  The motion is bounded by a gravitational potential and 
the Hamiltonian of the system reads (using units where m = g = 1) 

P? P ;  H = - + - + y .  
2 2  

The only parameters determining the behaviour of the system are the angles j 3 ~  and j& 
between the sides of the wedge. This system is integrable when ,9~ + ,8~ = x /2  and 
PL = 0, ,9~ = x/4. Wojtkowski [15] has shown analytically that this system admits an 
almost everywhere non-vanishing Lyapunov exponent for + BR > x / 2 .  Hence, for these 
values of the parameters, it is ergodic and ail isolated periodic orbits are unstable. 

Here we are looking for the solutions of the stationary Schrodinger equation with 
Dirichlet boundary condition on the wedge. We take the section r directly on the y-axis. 
The R system is formed by the right side of the wedge and the reflecting wall along the 
negative x-axis (see figure 2(b)). The motion in the y-direction is bounded by the potential 
and the reflecting wall, whereas motion in the x-direction is free.  the combination of the 
reflecting wall and the linear potential forms the waveguide along the negative x-axis. The 
L system is defined in the same way, using the left side of the wedge and a waveguide on 
the positive x-axis. The channel eigenfunctions are discussed in appendiv E. 

To find the scattering matrix SR of the right scattering system we will expand the 
wavefunctions on another basis on the right side of the vertical axis, and once again 
use the matching condition at x = 0. In the domain x 3 0, the right scattering system is 
separable when expressed in rotated coordinates .?? directed along the inclined boundary. 
Thus a natural basis is given by a product of two Airy functions (see appendix B) vanishing 
at j ;  = 0: 

9r = A~[(~S)''~F +z,] A~[(ZC)'/~X - ( 2 ' / 3 E + ~ 2 / 3 2 r ) ~ - 2 / 3 ]  
=Ai[(2s)'/3(-cx+sy)+z,]Ai[(2~)'/3(~~ +cy) - (21/3E+32/3z1)~-2'3]  

(14) 
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where Z, (r  E N") is the rth zero of the Airy function Ai, c = COS&) and s = sin(&). 
Each +; can be expressed as a linear combination of the (or's 
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and the matching condition between both decompositions of +: at x = 0 reads 

where the coefficients S:{ and J,, are the unknowns. Multiplying by &(y), integrating 
over y and using the orthonormality of the &'s, this transforms into 

m 

where 

Finally, system (17) can be simplified and rewritten in the following matrix form: 

Equation (19) does not ensure that J is the inverse of If, since both matrices are infinite- 
dimensional. The scattering matrix SL of the left scattering system is determined in the 
same way. 

For systems with ,6~ = j3~, we have SL = SR and the secular equation can be simplified. 
Using (17). we have 

Det[ll+SR] =Det[J]Det[Z'] 

Det [ 1 - SRI = Det [J]Det [Z'] 

and the problem reduces to finding the zeros of Det [J], Det[Z'] and Det[12]. Replacing 
(15) in (7) and permuting the sums, we obtain 

so that an eigenvector of J' with eigenvalue 0 (if it exists) would lead to an identically 
vanishing wavefunction. Hence it is enough to locate the solutions of the equations 

Det[I'(E)] = 0 and Det[IZ(E)] = 0. (22) 
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Once an eigen-energy E. has been found, the corresponding wavefnnction reads 

where b is the element of the kernel of [I'(E,)IT for antisymmetric eigenmodes or the 
element of the kernel of [I2(E,)lT for symmetric eigenmodes. 

'As a first illuseation of this method, we apply it to the integrable case with , 9 ~  = 
, 9 ~  = z/4. The system is separable in the rotated coordinates 2j;. The eigenfunctions 
are products of the eigenfunctions of the one-dimensional bouncer (see appendix B with 
g2 =gg = 2 - 1 P )  

V,&, j ; )  = K,I Ai [Z116f + z,] Ai [Z1I6T + zr] Vm, 1 E RI* (24) 

where K,; = 21/6 (Ai'[z,]Ai'[zJ)-' is the normalization constant. The related eigen- 
energies read 

E,, = -2-~/3(z, + 2,). (25) 
As E,,,! is symmetric in m and I ,  it is degenerate for m # 1. Evaluation of ZAn(E) at 
E = E,! gives 

!:"(Em,) = 
m 

Ai [2-'I3y +z,,,]Ai [2-'13y - Z2'3Eml - zm] @n(y)dy 
n 

= IL(E,;) vn E N*. (26) 

Thus the mth and 1th rows of IL(E , ; )  are equal. A similar computation of !:,,(E) at 
E = E,,,, yields 

!in(&,;) = -!;(Emr) Vn E N* (27) 

which shows that the mth and lth rows of I Z ( E , ~ )  differ only by a sign. As !:.(Emm) = 
-!:,(Emm) = ~ O  for all n E RI*, Ker[12(E,,)] # 0. SR(Em,) has an eigenvalue +I at 
E = E,,,,,, and the system admits a non-trivial symmetric solution 

as expected for this energy. For m # 1, Ker[12(E,~)] # 0 and Ker[I'(E,/)] # 0. Thus 
SR(E,,) has one eigenvalue f l  and another -1 at E = E,,. The system of equations has 
two different non-trivial solutions 

and the energy level is degenerate. The solutions correspond respectively to a symmetric 
and an antisymmetric eigenmode of the billiard. 

For the integrable wedge with BL = 0 and PR = n/4, we have SL = -n. The secular 
equation transforms into Det [I + SRI = 0. Thus one has to consider only the above 
antisymmetric solutions vanishing on the vertical boundary. 

In order to complete the discussion of the integrable wedge billiardsLthe general case 
with pL + = a / 2  is investigated in appendix C, where the section r is taken on the 
inclined side of the wedge. 
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3. Numerical results 

In this section we show how to implement the scattering method to determine the energy 
levels and the wavefunctions when BL = 0 and ,5'~ + n/4. We also discuss the accuracy of 
these results and the efficiency of the method. 

The S-matrix is an infinite-dimensional matrix. Only in the case ,!?R = n/4 is it possible 
to treat the full S-matrix analytically. For other values of BR, we have to consider restrictions 
of S with finite numbers of elements. The main problem in practical computations is to find 
the optimal restriction which will yield the required accuracy at the minimum computational 
effort. We show in appendix A that S is unitary with respect to the subspace of open 
channels. They contain the most important part of the information, since they represent 
travelling modes which give the leading contribution to the semiclassical limit. Thus, we 
have to consider at least the restriction to the subspace of the open channels. Unfortunately, 
such a truncation of S will miss some eigenvalues. This is well illustrated by the integrable 
case p~ = 0 and p~ = n/4 at E = E,, with n = 1. To see that the first and the mth 
row of I' are equal, the dimension of the restriction of S must be at least m. But due 
to the inclination of the boundary, we may have m N A/sin(pR). Hence it is necessary 
to include A(cosec(pR) - 1) evanescent modes to reproduce all levels of the integrable 
case. Such a phenomenon might happen whenever both the 11,"(x. y) and the pr(x, y) 
basis do not have the same number of elements which contribute semiclassically. This 
clearly demonstrates the need for including some closed channels in the computations to 
obtain a precise and reliable spectrum. On the other hand, the size of the~elements of S 
which involve closed channels decreases steadily at a rate which is slower than exponential, 
but seems to be faster than a power law. Hence, including too many evanescent modes 
leads to numerical imprecision. However, as we have no analytical method to estimate the 
number of evanescent modes which guarantees a desired accuracy, we have to investigate 
this problem numerically. 

In figure 3 we plot the mean error in the zeros of the secular equation as a function of 
the number of evanescent modes. The mean is taken over the 100 lowest eigen-energies 
for pR = n / 3 ,  and the error is given in units of the mean level spacing. The gain in 
precision is higher when adding the first and second non-propagating modes. This might 
be a consequence of the difference between both decompositions of '4, as explained above. 
Although the number of points is small, the error seems to decrease exponentially when 
more than two channels are added. Thus the algorithm converges very rapidly when the 
number of closed channels is increased. In what follows, we assume that the values to 
which the zeros tend are the exact eigen-energies. 

We have pointed out above that the truncation of the space of evanescent modes might 
lead to missing some eigen-energies. To check this point we studied the integrated density 
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m 
N ( E )  = C e ( E  - E,,)~ 

n=1 

and its fluctuations around its averaged value [I31 

in which the constant term has been postulated to be the same as for bi l l ids  with smooth 
boundary in spite of the corner. The full curve in figure 4 represents a plot of the difference 
NAV(E) - N ( E )  for 200 levels starting at the 2000th eigen-energy when ,6~ = n/3 .  One 
expects this quantity to fluctuate around the number of missing levels. The broken curve is 
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0 1 2 3 4 5 
#Evanescent modes 

Figure 3. !30r in the position of the levels as a function of the number of evanescent modes 
for fir. = 0 and & = z j3 .  The mor decreases exponentially with the number of evanescent 
modes. 

the corresponding running average over 200 values. Its small value shows that no level is 
missed, and seems to confirm the choice of the constant term a in NAV. The chain curve, 
which is the running standard deviation from the running average, reflects the strong rigidity 
of the spectrum, as expected for a chaotic system. The number of open modes A ( E )  for 
large E may be approximated from (B4) and the asymptotic behaviour of zn for large n 
[16]. As the leading term of NAV goes like E 3 ,  we obtain 

A - E E 3 i 2 - & .  (32) 

Thus the dimension of the restricted S only increases as the square root of the number of 
levels, which renders this algorithm efficient. For instance, A = 45 for the 1000th levels 
of a wedge with @R = r /3 .  This allows the computation of relatively high energy levels. 

We did not encounter any numerical difficulty in the determination of the first 3300 
eigen-energies of the wedge with @R = n/3. The computation time is highhly dependent on 
the ability to locate the next zero o f  Det [ [ ' ( E ) ] .  For energies of this order, computation of 
I' becomes time consuming, since one has to evaluate A* integrals numerically. This is the 
only impediment which prevented us from extending the calculations for higher energies. 
However, the additional A(cosec(,8R) - 1) evanescent modes might be another source of 
numerical problems for much higher energies. The elements of I,!,, tend to 0 for n,  r + CO. 

Thus, if one considers too many evanescent modes, the determinant becomes numerically 
identical to zero. 

Next we discuss the restriction S, with no evanescent modes, which is the starting 
point of all the semiclassical theory based on scattering. It is called the semiquantal 
approximation, because it neglects the modes which do not have a classical analogue. The 
matrix SS4 is a A x A  matrix for which the quantization condition (10) may be written as 
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Figure 4. Fluctuations of the exact density N ( E )  around its avenged value "(E)  for BL = 0 
and pn = n/3. The broken curve indieales lhe running average over 200 values, and the chain 
curve the running standard deviation. 

the secular equation 
z, ( E )  = Det [ B  - S, (E)]  = 0. (33) 

Figure 5 represents the shift in the position of all the zeros of the semiquantal approximation 
with 13 and 14 open channels for PR = n/3. The error is measured with respect to the 
exact position of the levels in units of the mean levels spacing. The thresholds of the 
13-15 channels are marked by broken lines. Comparison with results obtained for other 
billiards with the same method [ 1,6] reveals that the error is some order of magnitude larger 
for the wedge billiard. This is mainly due to the corner made by the waveguide and the 
boundary at n = 0, because the evanescent modes are essential for the proper description 
of the wavefunction near such a singularity. This problem does not appear for the above 
mentioned billiards where the waveguides were chosen to match the boundary smoothly. 
However, one can see on this figure that the shift reaches its maximum just before the 
opening of a new channel, emphasizing the role played by the almost conducting mode. 
As mentioned above, a more serious drawback of the semiquantal approximation is that it 
might miss or add some eigenvalues. For instance, the secular equation for j 3 ~  = xj3 and 
' E  < E300 cannot locate 10 (3.3%) of the eigen-energies and generates 6 (2%) irrelevant 
ones. 

Computation of the S-matrix from (19) involves the inversion of a finite approximation 
of the matrix I+, which is a further source of numerical imprecision. The accuracy of the 
numerical S-matrix can be verified with the help of the relations derived in appendix A. A 
reasonable estimate of the error is the mean over the difference So, . Sio - 1, where So, 
represents the unitary part of S. We chose to verify the accuracy of So,, since this part is the 
relevant one for the semiclassical analysis. In figure 6 we plot the error in the unitary part 
of S(E)  as a function of the number of evanescent modes for E = Elo at j 3 ~  = n/3. As 
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Figure 5. Shift in the position of the zems corresponding to the semiquantal approximation for 
+ 9 ~  = 0 and +9n = n/3. The maximum is obtained just before the opening of a new channel. 

#Evanescent modes 

Figure 6. Estimation of the error in the computation of &e unitary part of the S-matrix BS a 
function of the number of evanescent modes for +% = 0 and fin = ni3. The error decreases in 
a power law with the number of evanescent modes. 

one can see, the error only decreases as a power law in this case. Notice that So, . S:,, = Il 
is a symmetry which follows automatically from (19) and hence is always satisfied. 
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4. Semiclassical analysis 

Starting from the scatterinz formalism, we will re-derive the well known semiclassical trace 
formula for the density of states 
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m 

d(E)  = C 6 ( E  - E"). 
n=I 

(34) 

First we want to take advantage of the unitarily of &(E) to rewrite the semiquantal 
determinant (33) away from the threshold energies as a phase times an amplitude. Using 
the notation for the A eigenvalues of &,(E), we may write 

where @(E)  = CL, BL(E)-An. The last product is real on the real energy axis. Therefore, 
the imaginary part of its4ogarithmic derivative, calculated at E + ic in the limit E 0 is a 
sum of delta functions located at the eigen-energies. Using the expansion 

(36) 
m l  

n logDet[n-S,,(E)] = - x - T r S & ( E )  
"=I 

we obtain a semiquantal approximation for the exact density d ( E )  

i a  
d,(E) = %=@(E) + 

The first term on the RHS corresponds to the smooth part of the density. The Wigner delay 
time [I71 is defined as 

where the prime stands for differentiation with respect to E. 
characterizing the scattering is connected to the mean levels density of the billiard via 

Thus, this quantity 

Integrating over E ,  we obtain an expression for the mean integrated density 

(40) 
1 

2n 
&"(E) % -@(E) +constant. 

Because of the piecewise constant term -An in the definition of @(E) ,  this expression 
with constant = 0 is valid over the whole range of energy. The second term on the RHS 
represents the oscillatory part of the density do&) = d ( E )  -&(E).  Notice that it only 
depends on the quantities TrS&(E) which play a major role in this formalism. 

Up to this point we remained at the semiquantal level where all information comes from 
tbe quantum description of the system. The next step in the derivation of the semiclassical 
quantization is to express these quantities in terms of the periodic orbits of the corresponding 
classical system. Here it is important to note that the scattering matrix is the quantum 
analogue of the PoincarB map on the matching line r [18]. Let us define conjugate 
action and angle variables (I, 6) on r. The PoincarB map is the classical transformation 
which maps the initial condition (4,  6i) onto ( I f ,  &) = M(4, &,) corresponding to the next 
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intersection of the classical trajectory with the section r. The classical dynamics may also 
be represented by the generating function (or action) @(E,  @i, @t) which depends on the 
energy as a parameter. The mapping is expressed explicitly as 

aa aa 
and If = - I. - -- 

I -  

The S-matrix is the analogue of the classical mapping: it maps incoming scattering states 
onto outgoing scattering states of the system. We shall use this correspondence for wedges 
where the dynamics is either hyperbolic or integrable. 

When the map is hyperbolic, the trace of the semiquantal scattering matrix can be 
approximated by a sum over isolated periodic orbits [ 191 

where (Py(E) = @ ( E ,  @,-I, $1) is the action of the periodic orbit y (setting @"" = @o). 
The quantity uy stands for the Maslov index [ZO], and aM, is the monodromy matrix. The 
sum runs over all isolated primitive periodic orbits y of the billiard which cross ny times 
the section r, and which satisfy n,r, = n, where r, is the number of repetitions. Due to 
this restriction, generally only a finite number of periodic orbits contribute to this sum for 
each value of n. Inserting (42) in (37), we obtain a semiclassical approximation for the 
spectral density in terms of the periodic orbits. Noting that the double sum over all integers 
n and over the orbits y such that n,ry = n may be replaced by a double sum over all orbits 
and their repetitions r, we finally get - 

where T,(E) = &ay(E) stands for the period of the orbit y .  This formula is known 
as the Gutmiller trace formula [8]. The semiclassical approximation of the S-matrix in 
the present context is identical to the semiclassical T operator which was introduced by 
Bogomonly [22] who derived it using different considerations. 

We can also apply the scattering approach to integrable systems. The integrability 
implies Q, = @(E,& - &), since then 1, = Ii. Depending on whether the difference 
Aq5 = q5f - oi is a rational multiple of 2n or not. the orbit will be periodic or quasiperiodic. 
The ratio p = A@/Zn is called the rotation number. The S-matrix in the q5 representation 
is given by [21] 

where U is the Maslov index for the map. From this expression, one gets the action 
representation by double Legendre transformation, which gives 

(45) 

Actually, the channel quantum numbers resulting from the quantization along r are the 
integers Ii - u/4 and. I f -  u/4 (recall R = I).  As Sss is diagonal in this representation, it is 
straightforward to compute the phase of Det [-Ssq(E)] and obtain the averaged integrated 
density 

S&, 4,  If) = &,,1<exp[i(-A@(E, Ii)h + W E ,  Ii)) - fun)]. 
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where we have set I = Ii = If. To evaluate TrS&(E), one can use the Poisson formula 
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+W +m tm 
dn e2'"''g(n) 

n=- m=-m 
(47) 

which introduces a new sum over integers m. The resulting integral is solved in the saddle- 
point approximation, which selects the action f such that A@(E,  f) = 2xm/n .  Notice that 
the main contributions come from the rational or periodic tori, since p(i) E Q. Hence we 
get 

which we can now insert in (37) to obtain the semiclassical expression of the density of 
states. 

We may check these formulae on the integrable wedge BR + j 3 ~  = n/2, with the section 
? along the inclined side (see appendix C). As this system is separable in the rotated 
coordinates, the rotation number is given by the ratio of the periods T: and T,. The 
Hamiltonian in the action variables reads 

where 1: = & $ pj d? and 1, = & $ pf df. The periods T: and T3 are easily computed 
from the corresponding actions 1, and l j .  Setting (Y = (2&/3n)'13, we get 

Inverting this relation, one obtains the generating function of the Poincm6 map on the 
inclined boundary f = 0 

Replacing @ from (51) in (44), we get 

as expected for this wedge, and 

(53) 

Substituting this expression in the second term of the RHS of (37), we obtain a semiclassical 
approximation for the oscillatory part of the density. Regrouping the terms with positive 
and negative m, one obtains a real function for real energy, which reads 



Quantization of Hamiltonians in two dimensions 91 

For integrable systems it is also possible to derive the Berry-Tabor 1231 semiclassical 
expression for d(E) using EKB quantization. The E m  values for the actions are ZI = nl +v 14 
and Iz = nz+ v/4. Then, transforming both the sums into integrals using Poisson sum rule, 
the density reads 

d(E) RZ 5 S(E - H[ni+ iu ,nz  + 4.1) 
nt.n*=o 

with 

(O,,,~,,,,~(Z~, zZ) = exp[Zximl (zI - +U) + znimz (zZ - +U)]. (56) 
The integration over dZz fixes I2 = h ( E ,  Zl), and the one over dll is solved in the saddle- 
point approximation. The term with ml = mz = 0 does not oscilIate and hence gives 
the averaged density, for which we find E’/lZjrsc, as before. Removing this part and 
regrouping the terms pairwise with respect to ml and m2. we obtain exactly the same 
double sum as in (54). 

This check provides further support for the formalism based on scattering, since the 
staaing point of both derivations are quite different. However, the computations rely on the 
same methods. Except for one of the sums in (54), which comes from the expansion of the 
logarithm, the sums were generated by Poisson formula. In both cases, it is the saddle-point 
approximation which selects the contributions of the periodic tori with p E Q. 

5. Numerical checks of the semiclassical analysis 

In this section we discuss the applicability and the validity of the above semiclassical 
formula. In the numerical analysis we concentrate on the hyperbolic wedge billiard with 

First we consider the Gutzwiller trace formula (43). It is important to take this formula 
as an equation between distributions. As we cannot observe delta distributions numerically, 
it will be advantageous to apply these distributions on test functions. Moreover, we have 
at our disposal only a finite number of eigen-energies. Test functions with strong decaying 
properties will be appropriate, because they will cancel the effect of the missing high eigen- 
energies. It has been shown that such a procedure with suitable test functions may even 
render the sum absolutely convergent [26]. The price for this convergence is that the delta 
distributions transform into peaks of finite width. A more significant check is obtained 
when one considers a weighted Fourier transform of this equation. The peaks should then 
resolve the actions of the periodic orbits. It is interesting because in this way one can detect 
the existence of semiclassical contributions from other kind of orbits. Broadly speaking, 
equation (43) shows that the periodic orbits ‘know’ about the eigen-energies of the quantum 
system. The Fourier transform tests how the quantum system ‘remembers’ the periodic 
orbits. Such a representation is usually called a length spectrum, for the actions of the 
Euclidean billiard are proportional to the length of the orbits. 

We have seen that the angle is the only parameter influencing the dynamics. Thus, the 
classical system scales with energy and we have Qy(E) = where &, = Qy(l). 
With the help of the new variable K = E3/*, we define the transformation 

pL = 0. 

D ( x )  = im dK exp[ - (F)’] COS [ (K  - KO) x ]  d(K) . (57) 
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As d ( ~ )  is known for 0 < K < E%, we have to chose AK and KO so that the test function 
almost vanishes outside this range. 
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While the transform of the exact density of energy is straightforward and gives 

the transform of its semiclassical approximation can be computed analytically for KO = 0 
and well approximated for KO >> AK. For KO = 0, i.e. when most of the weight of the test 
function is put around K = 0, we obtain 

where 

C(Z)  = e-2% and S(z)  = e-'' Jld'dr e" . (60) 

The function S(z) is hown  as Duwson's integral. Both C(z) and S(z) contribute to the 
sum mainly around z = 0, i.e. at x = i r & ,  which correspond to the action of the periodic 
orbits and to their multiples. When KO >> AK,  one can extend the integration over the whole 
K-axis, since the contribution of the test function is then negligible for K e 0. This gives 

Figure 7 represents the Gutzwiller trace formula (43) applied on the above test function 
with KO = 0 for the wedge with ,9~ = n/3. The solid line is obtained from (58) with 
the lowest 3370 eigen-energies. A reasonable choice for the width of the Gaussian is 
AK = 50. The dotted line stands for the semiclassical approximation (59) with 95 periodic 
orbits. These are all periodic orbits with action &, < 10, except the grazing ones with 
m z 13. The actions (in units of E )  are marked with triangles. The agreement between 
both curves is rather good in general. One remarkable feature of the wedge billiard with 
BL = 0 and BR > 7r/4 is that each periodic orbit may be coded uniquely, using a two letter 
code. Following the orbit when starting from the inclined side, one writes a T for each 
bounce leading directly to the inclined side, and a V when the particle first hits the vertical 
side before coming back to the inclined side. This prescription is believed to lead to a 
different code for each periodic orbit [12]. The orbit with action @v % 3.26 is bouncing 
exactly in the corner, and hence may be coded either TTTV or TW. As the angle is of 
the type ir /n with n E EV and n is odd, this orbit is well defined, but the comesponding 
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Figure 7. Action spectrum for ,9~ = 0. ,& = n/3, AK = 50 and KO = 0. The full curve 
represents the transform of the exact density computed from 3370 levels. The dotted curve is 
obtained from 95 periodic orbits, whose actions are marl;ed with triangles. 

Figure 8. Families tending to an orbit running along the boundary. ( a )  Orbit of the grazing 
family V V V F  for m = 6. (b)  Orbit of the W n g  family VTVT'" form = 6. 

monodromy matrix does not exist [25]. Perturbation of this orbit leads to either TlTV or 
TW, depending on the first side hit near to the corner. So one has to derive a special 
saddle-point approximation which takes into account both behaviours. Following Szeredi 
1121, we take half the contributions of both "ITV and Tw. 

A crucial assumption for the derivation of the Gutzwiller formula is that all periodic 
orbits are isolated and unstable. In  the present case, we encounter only one problematic 
family of grazing orbits (see figure 8)  which tend to a limit orbit running along the boundary. 
The contribution of such families is difficult to estimate, since only the first members may 
be considered as isolated, but not the ones near the accumulation point. Nevertheless, it has 
been observed on the stadium billiard [XI that adding only the contributions of a few first 
members well reproduces the exact density, pointing out a high cancellation phenomenon 
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Table 1. Asymptotic behaviour of gazing families for large m. 

between pairs of periodic orbits belonging to different grazing families. 
We shall now analyse, in detail, the contribution of grazing orbits for the wedge 

with @R = n/3 [12]. The code for the most obvious grazing family reads VWTm, 
where Tm means that the particle successively hits m times the inclined side without 
touching the vertical one. There exists another grazing family, labelled VTVT"', which 
is a good candidate to cancel the contributions of the family V W  for large m. Both 
families tend to the same limit orbit sliding along the boundary, bouncing in the corner, 
going up vertically and coming back on the same path. Bouncing along the inclined 
boundary is integrable motion. S a  the map T reduces to a linear transformation in 
appropriate coordinates [9], and it is possible to compute analytically the exact location 
and the properties of both families. The behaviour of the quantities describing both 
grazing families is summarized in table 1, where the denominator IDet[n - (8My)']1-''* 
is characterized by uy, the sign of the trace of the monodromy matrix aM,, and p y ,  
the largest eigenvalue of aM,. Notice that the limit trajectory is bouncing exactly in 
the vertex, where specular reflection may not be continuously defined for arbitrary angle. 
Here it is well defined, since the boundary is regular near the comer and the angle 
is of the type n/n.  In contrast to what has been observed in [12], we did not find 
infinite families for j3~  = 49". We suspect that they may exist only when the limit 
orbit is well defined. The Maslov index vp  is extracted from numerical simulations, 
using the method described in [12]. Special care has to be taken when the particle 
bounces against the vertical wall with almost zero velocity. Out of the numerical data 
we found the simple rule 'add 3 for a T mapping and 5 for a V mapping'. This rule never 
failed on the several hundred orbits we investigated, but we have no analytical proof of 
it. 

The main difference between both families is the way of inverting the direction of the 
velocity near the vertical side. Orbits of the type vwTm hit the vertical side perpendicularly 
with almost zero velocity, whereas the orbits VTVT"' bounce up vertically, slow down to 
zero velocity and come back because of the potential. This causes a difference of 2 in the 
Maslov index. Therefore the contributions of both families, which are very close in absolute 
value for large m, take opposite signs and cancel. However, this does not mean that one 
may consider the orbits near the accumulation point as isolated. 

The situation appears to be similar in the stadium, where one grazing family bounces 
twice in the corner to inverse the direction of its velocity, while the other bounces 
perpendicularly to one side. This leads to the same difference in the Maslov indexes, and 
hence to cancellation of the contributions. Notice that in both cases, the grazing families are 
due to a part of the boundary along which motion is integrable, and the limit orbit bouncing 
exactly in the corner is well defined. Thus it seems that the symmetry of the dynamics near 
the comer plays a central role in the existence of infinite families and in the mechanism of 
cancellation. 

The point of accumulation of grazing orbits stands at x = 4 4 5  % 5.65. The excellent 
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Figure 9. Action spectrum for BL = 0, BR = xf3 ,  AK = 50 and KO = 150. The full curve 
represents the transform of the exact density computed from 3370 levels. The dotted curve 
is obmined from the same 95 periodic orbit5 as before. The acdoos of the periodic orbits are 
marked with triangles. 

matching between the curves around that point, despite the reduced number of members 
of the grazing families, is due to the above-described cancellation phenomenon. The other 
differences might originate from terms which have been neglected in the approximation 
(42). One cannot exclude a possible calculation error in the Maslov index, because of the 
difficulties involved in the numerical evaluation of some orbits. Such errors are difficult to 
detect when several orbits have nearly the same action. 

In figure 9 we set KO = 150 and used exactly the same data as before. The agreement 
between the curves improves significantly. This demonstrates the importance of the 
choice of the test function. Centring the Gaussian away from zero takes advantage of 
more eigen-energies, since the density of levels increases with K .  Moreover, as (43) is 
expected to hold in the semiclassical regime, it is natural to shift the weight to higher 
energies. 

The Gutzwiller trace formula makes use of all periodic orbits of the classical system. 
Hence it is very difficult to identify the contributions of the various periodic orbits from 
the rest In our derivation we obtained this formula as a sum over the traces of the 
powers of S,. We can therefore check the semiclassical approximation in more detail 
by considering the approximation (42) of TIS& for each n separately. For the wedge 
billiard, the period n,, represents the number of collisions with the vertical boundary, and 
hence corresponds to the number of V's conkned in the code of the orbit. Because 
of the potential, each periodic orbit has to hit the vertical side at least once, so that 
each code contains at least one V. Thus every periodic orbit of the system contributes 
to one of the powers of S. Here again we are confronted with the problem of the 
contributions of the grazing families. For ,¶R = n/3, all members of the families VTVTm 
and V W F  have to be included in the evaluation of Tr Ss', and Tr Ss',, respectively. Here 
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the previous mechanism of cancellation does not apply, since both families contribute 
to separate quantities. However, as the Maslov index steadily increases by 3 for each 
member of the same family, contributions from consecutive members (considered here 
as separated) will have different phases so that the whole sum will converge at the 
end. 

For the same reasons discussed above, we calculate a weighted Fourier transform of 
Tr S&(K): 
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The semiclassical approximations with KO = 0 and K~ >> AK read 

x exp [irY(by - iwyz) - i~ox]  C(;AK(rY&, - X I ) .  (64) 
We shall present results which are calculated for the semiclassical domain KO >> AK. 
Figure 10 represents the real part of the transform for n = 1 and KO = 150. The full 
cnrve stands for T 1 ( x ) .  It is obtained from the discrete Fourier transform of 900 values 
with K between 0 and 332. The dotted line represents T&)lco>k. It is computed from 

30.0 I I 

x 

Figure 10. Real pW of the action spec" of TIS- for @L = 0, pn = n/3, AK = 50 and 
KO = 150. The full curve repremts the trmsform of the semiquantal expression. The dotted 
line is obtained fmm the periodic orbits bouncing only once against the vertical wall. The 
contributions due to the onset of new channels are marked with diamonds. 
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all periodic orbits bouncing only one time against the vertical wall. The actions of these 
four orbits are marked with triangles. The semiclassical approximation perfectly matches 
the exact curve around the periodic orbits. For the same reason as before, we take half the 
contribution of the orbit 'I?Tv. Here the process is obvious, since T W  does not contribute 
to this sum. Apart from the large peaks which appear at the location of periodic orbits, 
there are also other peaks at multiples of 41/2/3 % 1.88 (marked with diamonds). We 
have made certain that these peaks are due to the periodicity induced by the onset of new 
thresholds. There are other factors which cannot be accounted for by either the simple 
assumption about the onset of thresholds or by the semiclassical theory. They are yet 
unexplained. 

In figures 11 and 12 we plot Tz(x) and T&r)lro>u on a range including all 
periodic orbits bouncing twice against the vertical wall. The dotted line results from 
five isolated periodic orbits and from the first 10 members of the family VTVTm. The 
semiclassical approximation reproduces the behaviour of T 2 ( x )  near the accumulation 
point at x % 5.65 well, pointing out the proper mechanism of cancellation of this 
family. 

The traces of the powers of S give the semiclassical approximation of the oscillatory 
part of d(E) .  It is also easy to check the formula for the averaged density via (40), which 
gives an approximation of the integrated averaged density as a quantity depending on the 
S. The full curve in figure 13 represents the exact integrated density N(E) for the range of 
energy where A ( E )  = 40 and j?~ = n/3. The dotted curve is computed from the variation 
of the phase of Det(-S) divided by 2n and stands for the semiclassical approximation of 
NAV(E). 
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Figure 12. Real part of the action s p w m  of TrS;'P for @L = 0, @n = n/3, Ax = 50 and 
KO = 150. The full curve represents the msform of the semiquantal expression. The dotted 
curve is obtained from the periodic orbits bouncing mice against the vertical wall and the lowest 
IO members of the grazing family W T m .  The contributions due to lhe onset of new channels 
are marked wilh diamonds. 

Figure 13. Integrated density of energy for @L = 0, @n = n/3 and E such that N E )  = 40. 
The full curve represents the exact integrated density N ( E ) .  The dotted line is obtained from 
the phase of Del(-S) divided by 2n and smds for the semiclassical approximation of N A ~ ( E ) .  
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In this paper we have extended the scattering approach to quantization to include not only 
billiards, but also smooth Hamiltonians of the type (1). The method was applied to the 
wedge billiard which falls into the class of ‘inclined billiards’ where the motion between 
successive bounces is not free. We have shown that the general formalism can also be 
applied to the present system. 

The scattering approach has a few advantages: the quantization condition is formulated 
as a secular equation which requires that, at an eigen-energy, the spectrum of the extended 
S-matrix includes the value 1. Restricting the S-matrix to the space of opened channels, 
and proceeding with the semiclassical approximation, we were able to derive not only the 
Gutzwiller trace formula for chaotic and integrable systems, but also to calculate the leading 
terms for the smooth level density. The fundamental step in the semiclassical approximation 
is the calculation of Tr S” in terms of periodic orbits of the classical Poincar6 scattering 
map. We could test the accuracy of this approximation numerically, and found a very good 
agreement. The scattering approach is a very convenient numerical tool. In the present work 
we were able to calculate thousands of eigenvalues of the wedge billiard with a very high 
accuracy. Using this database, we could check various aspects of the semiclassical theory, 
which were not accessible to previous authors who had to perform their analysis in terms 
of numerical spectra which are poorer both in accuracy and number of levels. We could, 
for example, test the role of families of periodic orbits which converge to a limit orbit. 

There are a few points in the scattering approach which need further elucidation. The 
first has to do with the condition which is the basis of the method, namely, that an eigenvalue 
occurs whenever the extended S(E)-matrix has 1 as an eigenvalue. This is a condition which 
is well defined for any finite truncation of the extended S-matrix, but may be problematic 
when the full S operator is considered. A difficulty of this sort occurs in the alternative 
method which uses the exterior-interior duality for the quantization of billiards [31. There it 
was shown by Eckmann and Pillet [7] that the condition for quantization has to be understood 
as a limit, so that as E 7 E,, one eigenphase of the S-matrix approaches 1 from above. In 
the present variant of the scattering approach, other complications may arise. The extended 
S-matrix is not unitary, and at threshold energies it is not even analytic in the energy E .  
We observed numerically that, between thresholds, the spectrum of the extended S-matrix 
is composed of A eigenvalues which are in the close vicinity of the unit circle, and the rest, 
which are concenaated near 0. As a threshold is approached, the absolute value of one of 
the eigenvalues near 0 s t m  to increase and at the threshold energy it reaches the unit circle 
through the vicinity of 1. This occurrence of the value 1 in the spectrum does not signal the 
appearance of a new eigen-energy of the system. Rather, it is a consequence of the opening 
of a new channel. In figure 14 we trace the dependence of the eigenvalues of the S-matrix 
near a threshold. We are not able to provide an explanation for the observed behaviour, but 
is seems to be universal (see, for example, a similar figure in [6]), and therefore essential 
for the complete understanding of the scattering approach. 

Because of lack of space, we did not report in this paper about some of our numerical 
and analytical studies which relate to the spectral statistics, spectral correlations and the 
distribution of speed ‘velocities’ aE,/ag. These distributions and correlations are now 
studied with applications to atomic and mesoscopic physics. The extensive data set that we 
built for the wedge billiard offers an excellent basis for such statistical studies, which will 
be reported in a subsequent publication. 
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Figure 14. parametric representations of the 25 first eigenphases e'@ as a function of the energy 
for PL = 0 and pn  = n/3 near a threshold. The energy parameter mns from 10 units of the 
mean level spacing below the 21st threshold to 10 units above. (a)  Energy interval below the 
threshold. The energy difference between the dots is chosen to decrease exponentially. (b) 
Energy interval above the threshold. Here the energy difference between the circles increases 
exponentially. 
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Appendix A. Symmetries of the S-matrix 

In this appendix, we show the consequences of  invariance with respect to time inversion and 
reality of the potential on the structure of the scattering matrix. These relations may also be 
derived by combining other equations 161, but their origin lies in the above symmetry. They 
provide an easy proof of the symmetry of the full S-matrix and are useful for verifying the 
accuracy of the numerical computations. 

To improve the formulation of the results, we will use the notation 

where the indexes o and c of the submatrices stand respectively for open and closed channels. 
This notation has to be taken with some care, since (ST),, = 

are both solutions of the 
same Schrodinger equation. Choosing a wavefunction @ as a linear combination of the 
en involving no incoming closed modes and decomposing it into sums o f  propagating and 
non-propagating modes, we obtain 

As the potential is real and time-independent, @ and 

(W 
where KI = ,/-. The coefficients of the outgoing modes satisfy& = C:==, asnr .  
The complex conjugate then reads 

(A3) 
As a solution of the scattering system, the coefficients of the outgoing modes may also be 
related to the ingoing ones via the S-matrix 

A 

a,* = xb ;S l ,  for n < A 
1=1 

Inserting the definition of b, in both relations, and noting that they are valid for any choice 
o f  the coefficients a,,, we obtain 

A 

S;,S~,, = J,, for n ,  m < A 
1=1 
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Similarly, choosing @ with no incoming open modes gives 
A 

= i(SlI -~sif) = 2 1 m [ ~ , f ]  for n,l > A .  (AS) 
m=l 

Using compact notation, these relations read 

The divergence of the current vanishes for stationary states of the Schrodinger equation 
with real potential. Thus the flux F ( x )  through the surface delimited by the right (left) part 
of the system and the section r at x = constant must also vanish. The only part which 
contributes is the section r, so that 

(A 12) 
1 -  W )  = 1- Q(@*k@ - !bo,@*). 

Requiring @ ( x )  to be zero successively for wavefunctions @ with no incoming closed 
modes, no incoming open modes and finally both incoming closed and open modes yields 

s, . sio = sAo . s, = n (A131 
s,, . = -isoc (A14) 
S, . = i (s:~ - see) . (-415) 

Comparing pairwise both sets of equations, we get S = ST. Thus the symmetry of the total 
S-matrix is a consequence of the fact that the potential is time-independent and real. 

Appendix B. One-dimensional quantum bouncer 

The differential equation and boundary condition for the wavefunction @ ( x )  of a one- 
dimensional particle confined between a hard wall and a gravitational potential reads 

@ = O  if x > O  

@ = O  if x < O .  

Using the variable substitution z = (2mZg/fz2)1/3(x - E./mg), the differential equation 
transforms into (see [U]) 

z@ = 0. dZ@ 
dzZ 
_ -  

As a second-order differential equation, this latter admits two linear independent solutions 
Ai(z) and Bi(z) which are called Airyfunctions. The wavefunction must be bounded for 
x + +CO, thus Bi(z) has to be excluded. The solutions then take the form 

with c the normalization constant. Setting @(O) = 0 quantizes the energy, which then takes 
the values 

2m2g 4 1 3  
E" = - (-;;.-) mgz, for n E W 
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where zn is the nth zero of Ai(z). It is straightforward to compute the normalization constant 
C,: 

Thus the orthonormal set of eigenfunctions reads 

Appendix C. Integrable case with the section on tbe inclined boundary 

Here we discuss the integrable case p ~ + p ~  = n/2, assuming that the section is taken on 
the side j = 0 (see figure 8). The potential in the waveguide is defined by the value of the 
original potential on the .Z:-ax&. Hence it is also linear, b,ut directed towards the i-direction. 
The channel eigenfunctions and egen-energies E, are taken from appendix B with 

p, =Ai [ (~c)”~X + 2.1 Ai [(Z~)l/~j - (Zi/’E + C ~ / ~ Z , ) S - ~ / ~ ]  with r E RI*. (Cl) 

The matrix gL -1, and s”. is determined by the matching condition at j = 0. 
Computation of I:,, ( E )  at the eigen-energies Em[ = -2-’/3(czfiz, + S ~ / ~ Z ~ )  yields 

Thus the kernel of [?(E,[)]T admits the expected non-trivial solution 

=8 cos(&). The scattering functions *: are decomposed on the basis 

 en(^,[) = o Vn E W. (U) 

Notice that, although it would give the correct result, the choice r on x = 0 is inappropriate 
for this investigation. This shows that for symmetry reasons it may be advantageous to take 
the section at different places 

Note odded. A similar approach in terms of propagators has been developed recently by Prosen 1281. 
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