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Abstract. We extend the scattering approach to quantize general Hamiltonian systems in two
dimensions and demonstrate it for the wedge bitliard. The resulting energy levels are given by
the zeros of a secular equation. The corresponding wavefunctions may also be constructed. We
verify analytically that this quantization condition is exact in the case of the integrable wedges.
This method has been applied successfully to computing numerically a few thousand levels for
various values of the angle. Using these data, we can check the Guizwiller trace formula and
other semiclassical relations involving the scattering matrix and periodic orbits, for which we
find excellent agreement.

1. Introduction

Since its introduction some years ago, the scatfering approach for quantization {1] has
been uvsed exclusively to quantize billiards, and for these systems it has proved to be a
very convenient starting point for both analytical [2—4] and numerical [5, 6] investigations.
Recently, Eckmann and Pillet {71 have proved a theorem which puts one of the versions of
the scattering approach on a rigorous foundation. The main purpose of the present work
is to show that the scattering approach can be extended quite easily to other systems with
Hamiltonians of the form

* :
H{r,p)= > + V(r) (n

where r (p) are BEuclidean coordinates (momenta) in the plane, and it is assumed that
V() = oo for |r| = co. We shall show how one can construct two auxiliary scattering
systems, in terms of which quantization is achieved. The main result is that here also, one
can define a scattering matrix S(E), and determine the spectrum of the original problem by
finding the energies E, at which the spectrum of § contains the eigenvalue 1. Once this is
done, one can develop the semiclassical quantization using the same ideas and formalism as
were used previously, and derive the semiclassical expression for the spectral density [8],
the Gutzwiller Voros ¢ function etc.

We shall {llustrate this formalism by quantizing a systern which can be considered as
intermediate between billiards and potential problems of type (1). This is the wedge billiard,
which consists of two hard walls that meet at the origin y = — cot{8r)x and ¥ = cot(fr)x
(the angles are measured away from the y-axis). The motion is bounded by a potential
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78 C Rouvinez and U Smilansky

V{r) = y. The wedge billiard has a few important advantages: it is known that the classical
dynamics are integrable, mixed or hyperbolic depending on the choice of the angles Sy .
In the chaotic regime with g, = 0, the dynamics can be represented symbolically in terms
of a binary code. This is of great help in identifying periodic orbits. The quantization
of the wedge billiard was previously discussed by Wittek and others [9, 10] and later by
Szeredi et al [11-14]. This will enable us to compare the more familiar approach, which
was previously followed, with the scattering approach which we pursued here. Last but
not least, the Hamiltonian is sufficiently simpie so that a large quantum database can be
calculated. It aflows a detailed investigation of the semiclassical approximation and the
validity of various assumptions which are made when this approximation is derived.

The paper is arranged in the following way. The first section describes the exact
guantization procedure for a general Hamiltonian of the form (1). Once this is done, we
shall focus on the wedge billiard, and show how the S{(E)-matrix is written explicitly in
terms of integrals involving Airy functions. A good check is provided for the cases where
BL+ Br =m/2 and B = 0, Pfr = w/4. These wedge billiards are integrable, and we
shall show explicitly that the scattering approach provides the exact energy levels. An
important advantage of the scattering approach is that it offers a very efficient procedure
for numerical guantization. This will be discussed in section 3, and the accuracy of the
method will be studied in detail. The outcome of the numerical work consists of spectra
of several thousands of levels each, which form an extensive database for further studies
of the semiclassical approximation, which will be the subject of section 4. This section
will start with a short résumé of the derivation of the semiclassical approximation for the
spectral density (Gutzwiller’s trace formula). In section 5, we test numerically the validity
of the semiclassical approximations derived in the previous section. Finally, we discuss the
possible extensions of this work in the last section.

2. Exact quantization

We consider a two-dimensional system with Hamiltonian of type (1), where motion is
bounded by the potential. Here we are looking for the square-integrable solutions ¥(x, »)
of the stationary Schrédinger equation ( = 1)

[—LA +V(x,y) —E] Yix, y)=0 @)
2m

on R, To solve this problem, we adapt a method based on scattering theory {1].

First, we take a straight line I" in the xy-plane. The method applies for an arbitrary I,
but a sensible choice of the section will reduce the error of the semiclassical approximation.
Performing an appropriate rotation of the coordinate system, we can always assume that I"
lies on the y-axis. Thus, it separates the original system into two independent left (L} and
right (R) scattering systems. The R system is formed by the potential on the right side of
I", and its constant continuation on the left side (see figure 1):

_vVix,m for x>0
Vr(x, y) = { V{0, for x<0. &)

Hence motion in the y-direction is bounded by the potential, whereas motion in the x-
direction is free for x < 0. The constant potential along the negative x-axis forms a
‘waveguide’ in which the scattering process is defined. Similatly, we define the L system
using the left part of the original system. The corresponding waveguide runs along the
positive x-axis. The solutions of the R (L) scattering system are solutions of the stationary
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Figure 1. (z) Equipotential lines of the original Hamiltonian system. The section I' is taken
on the vertical axis, (&) Equipotential lines of the right (full curves) and left (broken curves)
scattering systems.

Schrodinger equation restricted to the left (right) side of the origin and the right (left)
waveguide. In the asymptotic region x < 0 (x > 0}, such solutions may be written

o
1 : .
R0 ) =3 —=[bme™ + P gy VmeN @)
=1 VM

where the functions ¢;{y) are channel or mode eigenfunctions with eigen-energies £y, and

& \/’E — E[ for E 2 E;
1 —_—
WE —E for EZE

The channel eigenfunctions ¢;(y) are the solutions of the one-dimensional Schrédinger
equation on I':

sothat k?+E; =E. 5)

2
5+ VO~ B 60) =o0. ®
As the potential is binding, the energy spectrum is discrete. The ¢;’s provide an orthonormal
basis of the Hilbert space of the one-dimensional problem. The waveguides are the same for
the R and L problems. Note that when the exact solutions of (6) are not known analytically,
one can still solve it in the WKB approximation, in order to get a quantization condition
which holds in the semiclassical regime.

A channel ! for which k; € R* is called open andsthe corresponding modes travelling,
since e™4% represents propagating wavefunctions. When &; € iR*, e¥** is an increasing
or decreasing exponential function. In that case, one says that the channel ! is closed
and the mode evanescent. For potentials bounded from below, the number A(E) of open
channels at fixed energy E is finite, whereas the number of closed channels is infinite. The
functions e®*¢;(y) stand for wavefunctions travelling from x = —cc into the scattering
system. We will call them incoming modes. Similarly, the functions e=**¢;(y) will be
referred as outgoing modes. Thus, for m < A, the function ¥R represents a wave of energy
E propagating from the left in the incoming open channel m, scatiering against the right
part of the potential and re-emitted with amplitude S%, in the various open and closed
channels /. The wavefunctions with m > A do not correspond to propagating modes.
They are usually neglected in the semiclassical approximation, since their contributions
decrease exponentially in the asymptotic domain. Here we have to consider them, since the

wavefunction is expanded on a complete basis on T
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We shall use the scattering functions ¥R and YL to construct an eigenfunction of the
original Hamiltonian. As ¥ has to satisfy the Schrodinger equation on the R and L sides
of I", a good apsatz is a function defined by a linear combination of the %R in the region
x 2 0, and a linear combination of the % in the region x < 0. Such a function does not
exist for arbitrary values of the energy, since the wavefunctions of both decompositions and
their normal derivatives (with respect to I"} have to match at x = 0. Actually, this matching
is the quantization condition. For this purpose we have to find two sets of coefficients aX
and a%, m € N*, such that

> aRkyR(x,y)  for x20
Wx,yy={ " )

o
S ahpkxy)  for x<0
m=1
and the values of both the R and the L. decompositions of ¥ and 9;¥ have to be matched
at x = (. Using the orthonormality of the functions ¢;(y), this condition transforms into a
system of linear equations

o0 R 1 o L .
;“'"f/k—j [8me -+ S ";am W [6mt + Sk ] VieN o
[e] 0 .
13 aRl [ — SN] =19 ahki [~Sm +5Sm]  VIeNT
m=1 m=1

which is a set of homogeneous equations for the coefficients a® and . Using a matrix
notation and remembering that scatiering matrices are symmefric (see appendix A), we
obtain the matching condition in the form

i —st a®
(—SR 1 )(a")"o )
which admits a non-frivial solution if and only if

Ker[l - S(E) # 8 with S(E) = St . SR, (10)

Thus the system admits E as eigen-energy whenever S(E) has an eigenvalue +1. Since
each element of the kernel gives a different solution for the matching, the degeneracy simply
corresponds to this number of elements. Furthermore, this quantization condition gives a
constructive method to obtain not only the eigen-energies, but the wavefunction too. First,
one has to look for a value of E such that (10) is satisfied. Then one solves (9) to obtain
the coefficients of the decomposition (7).

For symmetrical systems, it is also possible to determine the parity of the wavefunction.
Consider a system for which the section I" is a symmetry line with

Vi, ) =V({—x,¥) VxeR. (11)

As both the R and the L scattering systems are identical, S® = SL. According to (10),
the system admits an eigenfunction of energy E each time S - S® has an eigenvalue +1.
Thus the symmetric system will have eigenfunctions for each eigenvalue £1 of S*. For
this special case, the system (8) can be simplified and rewritten as

[0+ 88} (a® —a") =0. [1-5%)(a®+a") =0. (12)

Assume S®(E) has an eigenvalue +-1. The corresponding eigenvector (a® 4 ¢“) must also
satisfy the other equation of the system, so that a* = g*. From (7), one deduces that
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Figure 2. (a) Original billiard system composed of two inclined sides. (&) Right scattering
system (fuil lines) composed of the right inclired side and a waveguide on the negative x-axis,
Left scattering system (broken lines) composed of the left inclined side and a waveguide on the
positive x-axis.

W(x,y) = ¥(—x,y), ie that the corresponding wavefunction is symmetric. Similarly,
the eigenvalues —1 of SR(E) lead to antisymmetric eigenfunctions verifying ¥(x, y) =
—Y(—x, ¥).

At this point we depart from the general Hamiltonian (1) and consider the wedge billiard,
This billiard consists of two walls (infinite potential barrier) along the lines ¥ = —cot{(B)}x
and y = cot{Br)x (see figure 2(a)). The motion is bounded by a gravitational potential and
the Hamiltonian of the system reads (using units where m = g = 1}

_ 7
H= 2 + 5ty _ (13)
The only parameters determining the behaviour of the system are the angles 8 and Ar
between the sides of the wedge. This system is integrable when S + Br = 7/2 and
BL =0, fr = /4. Wojtkowski [15] has shown analytically that this system admits an
almost everywhere non-vanishing Lyapunov exponent for 8, + fr > 7/2. Hence, for these
values of the parameters, it is ergodic and all isolated periodic orbits are unstable.

Here we are looking for the solutions of the stationary Schridinger equation with
Dirichlet boundary condition on the wedge. We take the section I' directly on the y-axis.
The R system is formed by the right side of the wedge and the reflecting wall along the
negative x-axis (see figure 2(b)). The motion in the y-direction is bounded by the potential
and the reflecting wall, whereas motion in the x-direction is free. The combination of the
reflecting wall and the linear potential forms the waveguide along the negative x-axis. The
L system is defined in the same way, using the left side of the wedge and a waveguide on
the positive x-axis. The channel eigenfunctions are discussed in appendix B.

To find the scattering matrix S® of the right scattering system we will expand the
wavefunctions ¥~ on another basis on the right side of the vertical axis, and once again
use the matching condition at x = 0. In the domain x > O, the right scattering system is
separable when expressed in rotated coordinates X§ directed along the inclined boundary.
Thus a natural basis is given by a product of two Airy functions (see appendix B) vanishing
at V=0

or = Ai[29)°F + 2] Ai[20)'/°% — (2P E + 57, )c77]

= AL [(25)3(—cx +s3) + 2. | Ai[(20)' 2 (sx + ey} — (217 E + 5%z, )]
(14)
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where z, (r € N*) is the rth zero of the Airy function Ai, ¢ = cos{fg) and s = sin(fg).
Each 4} can be expressed as a linear combination of the ¢,’s

VR, Y)Y =D Jmr (%, ) (15)

r=1

and the matching condition between both decompositions of Y% at x = 0 reads

[=¢] 1 o0
Y = [ow + 5100 = 3 0,

=i r=1

) o0
Zu/‘ (8t = SR] &) =Y Jur Bs0r) (0, ¥)

=1 r=1

(16)

where the coefficients S¥, and J,, are the unknowns. Multiplying by ¢,(y), integrating
over y and using the orthonormality of the ¢,’s, this transforms into

oo
Smn + Sﬁn = Z er Irln
r=1

(7
.ﬁn = Z er Irzn
r=i
where
cQ
1L =k f (0, y) ¢a () dy
70 (18)
2 = or) (0, ¥) n(¥)dy .
Finally, system (17) can be simplified and rewritten in the following matrix form:
SR=7.71"
with 1% =L(1"'+7%). 19
1 =J. I‘;. 2( ) ( )

Equation (19) dees not ensure that J is the inverse of 77, since both matrices are infinite-
dimensional. The scattering matrix S™ of the left scattering system is determined in the
same way.

For systems with 81, = fr, we have §* = S and the secular equation can be simplified.
Using (17), we have

Det [1+ §%] = Det [J JDet [1']
Det[ 1 — §¥] = Det [J |Det [ 1]

and the problem reduces to finding the zeros of Det[/ ], Det[/'] and Det[I%]. Replacing
(15) in (7) and permuting the sums, we obtain

W(x,y) = Z(Za )qar(x,w 21)

r=1

(20)

so that an eigenvector of JT with eigenvalue 0 (if it exists) would lead to an identically
vanishing wavefunction. Hence it is enough to locate the solutions of the equations

Det[I'(E)] =0 and Det[I%(E)] = 0. (22)
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Once an eigen-energy E, has been found, the corresponding wavefunction reads

=o]
Wi, ) =Y bepe(x,y) (23)
r=1
where b is the element of the kernel of [J!1(E,)]T for antisymmetric eigenmodes or the
element of the kernel of [I2(E,)]" for symmetric eigenmodes.

“As a first illustration of this method, we apply it to the integrable case with i =
Br = mw/4. The system is separable in the rotated coordinates ¥j. The eigenfunctions
are products (!szthe eigenfunctions of the one-dimensional bouncer (see appendix B with

;=85 =27"7)

Wy (%, ) = K AL [28F + 2,,] AT [255 + 7] ¥m,l € N* (24)

where K,y = 216 (Ai’[zm]Ai'[zg])hl is the normalization constant. The related eigen-
energies read

Em = =273z, +2)). (25)

As Ey is symmetric in m and /, it is degenerate for m # {. Evaluation of I} (E) at
E = E,; gives '

[ 0]
LB = Vi fo Ai[27V3y + 2, ) Ai[271Py — 2By — 2, ) 6, () dy

=]
=k, fu Ai[27y + 2, ] AL [27' By + 2] du(¥) dy
= I, (Em) ¥ e N*. (26)

Thus the mth and /th rows of I'(E,,;) are equal. A similar computation of I2 (E) at
E = E,; yields

Ién(Em!) = —I!i(Eml) Yn ¢ H* 27)

which shows that the mth and Ith rows of J2(E,y) differ only by a sign. As Inzm (Epm) =
—12 (Epm) =0 for all = € N*, Ker[[2(Epm)] # B. S®(Emm) has an eigenvalue +1 at
E = E,, and the systemn admits a non-trivial symmetric solution

EbJT zg for i # m } = W, = ¢nlx,y) (28)

as expected for this energy. For m # 1, Ker [I%(Ey)] @ and Ker[I'(E,)] # 8. Thus
SR(E,,;) has one eigenvalue +1 and another —1 at E = E,;. The system of equations has
two different non-trivial solutions

by = %5

b; =0 forig{m,l}

and the energy level is degenerate. The solutions correspond respectively to a symmetric
and an antisymmetric eigenmode of the billiard.

For the integrable wedge with . = 0 and fr = /4, we have S~ = —1. The secular
equation transforms into Det []l+ S*] = 0. Thus one has to consider only the above
antisymmetric solutions vanishing on the vertical boundary.

In order to complete the discussion of the integrable wedge billiards, the general case
with 8, + fr = 7/2 is investigated in appendix C, where the section I' is taken on the
inclined side of the wedge.

} = Y, =g.x,)E@x,y) (29
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3. Numerical results

In this section we show how to implement the scattering method to determine the energy
levels and the wavefunctions when 8, = 0 and 8y # 7 /4. We also discuss the accuracy of
these results and the efficiency of the method.

The S-matrix is an infinite-dimensional matrix. Only in the case S = 7 /4 is it possible
to treat the full S-matrix analytically. For other values of Sz, we have to consider restrictions
of § with finite numbers of elements. The main problem in practical computations is to find
the optimal restriction which wilt yield the required accuracy at the minimum computational
effort. 'We show in appendix A that 5 is uvnitary with respect to the subspace of open
channels. They contain the most important part of the information, since they represent
travelling modes which give the leading contribution to the semiclassical limit. Thus, we
have to consider at least the restriction to the subspace of the open channels. Unfortunately,
such a truncation of § will miss some eigenvalues. This is well illustrated by the integrable
case B = 0 and Br = 7/4 at £ = E,, with n = 1. To see that the first and the mth
row of I! are equal, the dimension of the restriction of § must be at least m. But due
to the inclination of the boundary, we may have m =~ A/sin(8g). Hence it is necessary
to include A(cosec(Br) — 1) evanescent modes to reproduce all levels of the integrable
case. Such a phenomenon might happen whenever both the ¥R (x, y) and the ¢,(x, y)
basis do not have the same number of elements which contribute semiclassically. This
clearly demonstrates the need for including some closed channels in the computations to
obtain a pracise and reliable spectrum. On the other hand, the size of the-elements of §
which involve closed channels decreases steadily at a rate which is slower than exponential,
but seems to be faster than a power law. Hence, including too many evanescent modes
leads to numerical imprecision. However, as we have no analytical method to estimate the
number of evanescent modes which guarantees a desired accuracy, we have to investigate
tieis problem numerically.

In figure 3 we plot the mean error in the zeros of the secular equation as a function of
the number of evanescent modes. The mean is taken over the 100 lowest eigen-energies
for g = /3, and the error is given in units of the mean level spacing. The gain in
precision is higher when adding the first and second non-propagating modes. This might
be a consequence of the difference between both decompositions of W, as explained above.
Although the number of points is small, the error seems to decrease exponentially when
more than two channels are added. Thus the algorithm converges very raptdly when the
number of closed channels is increased. In what follows, we assume that the values to
which the zeros tend are the exact eigen-energies.

We have pointed out above that the truncation of the space of evanescent modes might
lead to missing some eigen-energies. To check this point we studied the integrated density

NEY =Y O0E - En) (30)

=l
and its fluctuations around its averaged value [13]

——F— " F - 31
127 3427 + 6 (31

-in which the constant term has been postulated to be the same as for billiards with smooth
boundary in spite of the corner. The full curve in figure 4 represents a plot of the difference
Nav(E) — N(E) for 200 levels starting at the 2000th eigen-energy when S = x/3. One

expects this quantity to fluctuate around the number of missing levels. The broken curve is

Nay(E) =
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Figure 3. Error in the position of the levels as a function of the number of evanescent modes
for g = 0 and fr = 7 /3. The error decreases exponentially with the number of evanescent
modes,

the corresponding running average over 200 values. Its small value shows that no level is
missed, and seems to confirm the choice of the constant term % in Nay. The chain curve,
which is the running standard deviation from the running average, reflects the strong rigidity
of the spectrum, as expected for a chaotic system. The number of open modes A(E) for
farge E may be approximated from (B4) and the asymptotic behaviour of z, for large n
[16]. As the leading term of Nav goes like E?, we obtain

A ~ E3/2 ~o NAV . (32)

Thus the dimension of the restricted S only increases as the square root of the number of
levels, which renders this algorithm efficient. For instance, A = 45 for the 1000th levels
of 2 wedge with S = m/3. This allows the computation of relatively high energy levels.

We did not encounter any numerical difficulty in the determination of the first 3300
gigen-energies of the wedge with fp = m/3. The computation time is highly dependent on
the ability to Iocate the next zero of Det [I ! (E)]. For energies of this order, computation of
I' becomes time consuming, since one has to evaluate A? integrals numerically. This is the
only impediment which prevented us from extending the calculations for higher energies.
However, the additional A(cosec(Br) — 1) evanescent modes might be another source of
numerical problems for much higher energies. The elements of I tend to 0 for n,r — 0.
Thus, if one considers too many evanescent modes, the determinant becomes numerjcally
identical to zero. :

Next we discuss the restriction Sy with no evanescent modes, which is the starting
point of all the semiclassical theory based on scattering. It is called the semiguantal
approximation, because it neglects the modes which do not have a classical analogue. The
matrix S is 8 A XA matrix for which the quantization condition (10} may be written as
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Figure 4. Flyctuations of the exact density N(£) around its averaged value May(E) for fi, =0
and gr = /3. The broken curve indicates the running average over 200 values, and the chain
curve the running standard deviation.

the secular equation
Zy (E) = Det[1— S (B)] =0. (33)

Figure 5 represents the shift in the position of all the zeros of the semiquantal approximation
with 13 and 14 open channels for S = 7 /3. The error is measured with respect to the
exact position of the levels in units of the mean levels spacing. The thresholds of the
13-15 channels are marked by broken lines. Comparison with results obtained for other
billiards with the same method [1, 6] reveals that the error is some order of magnitude iarger
for the wedge billiard. This is mainly due to the corner made by the waveguide and the
boundary at x = 0, because the evanescent modes are essential for the proper description
of the wavefunction near such a singularity. This problem does not appear for the above-
mentioned billiards where the waveguides were chosen to match the boundary smoothly.
However, one can see on this figure that the shiff reaches its maximam just before the
opening of a new channel, emphasizing the role played by the almost conducting mode.
As mentioned above, a more serious drawback of the semiquantal approximation is that it
might miss or add some eigenvalues. For instance, the secular equation for g = /3 and
"E & Esgp cannot locate 10 (3.3%) of the eigen-energies and generates 6 (2%) irrelevant
ones.

Computation of the S-matrix from (19) involves the inversion of a finite approximation
of the matrix 7%, which is a further source of numerical imprecision. The accuracy of the
numerical S-matrix can be verified with the help of the relations derived in appendix A. A
reasonable estimate of the error is the mean over the difference Sy, - SZO — 1, where §,,
represents the unitary part of 5. We chose to verify the accuracy of §,,, since this part is the
relevant one for the semiclassical analysis. In figure 6 we plot the error in the unitary part
of S(E) as a function of the number of evanescent modes for £ = Ejg at g = 7/3. As
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Figure 5. Shift in the position of the zeros corresponding to the semiquantal approximation for
AL =0and 8g = m/3. The maximum is obtained just before the opening of a new channel,
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Figure 6. Estimation of the error in the computation of the unitary part of the S-matrix as a
function of the number of evanescent modes for g = 0 and fp = x/3. The emor decreases in
a power law with the number of evanescent modes.

one can see, the error only decreases as a power law in this case. Notice that S, - Sg, = 1
is a symmetry which follows automatically from (19) and hence is always satisfied.
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4. Semiclassical analysis

Starting from the scattering formalism, we will re-derive the well known semiclassical trace
formula for the density of states

o0
d(E)=) 3(E - E,). (34)
n=1
First we want to take advantage of the unitarity of S, (E) to rewrite the semiquantal
determinant (33) away from the threshold energies as a phase times an amplitude. Using
the notation () for the A eigenvalues of Si5(E), we may write

Q)] a iy [6:E)
Zoo(E) =exp [——2—] 2A Esm —*2— (35)
where @(F) = f‘=1 6 {E)—Am. The last product is real on the real energy axis. Therefore,
the imaginary part of its logarithmic derivative, calculated at £ + i¢ in the limit ¢ O is a
sum of delta functions located at the eigen-energies. Using the expansion

o2
1
log Det [1 — Sq(E)] = — ; ~Tr 53,(E) (36}
we obtain a semiquantal approximation for the exact density d(E)
dq(E) = i—{-]‘—(9(15‘) + 1 lim Im i liTrS" (E +ig) 37)
T on E mes0 |£2ndE ’

The first term on the RHS corresponds to the smooth part of the density. The Wigner delay
time [17] is defined as

1 ) 1 &
(E)=Tr ﬁSIq(E)Ssq(E)} = — EG{(E) (38)
iA A=
where the prime stands for differentiation with respect to E. Thus, this quantity
characterizing the scattering is connected to the mean levels density of the billiard via

1 ., 1 & A
~—O(E)=— [(EYy = —1(E). 3
de(B) % o OBy = 723 6i(E) = 7w(E) (39)
Integrating over E, we obtain an expression for the mean integrated density

1
Nay(E) = EG(E) -+ constant . 40

Because of the piecewise constant term —As in the definition of ®(E), this expression
with constant = 0 is valid over the whole range of energy. The second term on the RHS
represents the oscillatory part of the density doc(E) = d(E) — day(E). Notice that it only
depends on the quantities Tr Sg(E) which play a major role in this formalism.

Up to this point we remained at the semiquantal level where all information comes from
the quantum description of the system. The next step in the derivation of the semiclassical
quantization is to express these quantities in terms of the periodic orbits of the corresponding
classical system. Here it is important to note that the scattering matrix is the quantum
analogue of the Poincaré map on the matching line T’ [18]. Let us define conjugate
action and angle variables (I, ¢) on I'. The Poincaré map is the classical transformation
which maps the initial condition ([, ¢;) onto (%, ¢r) = M (4, ¢) corresponding to the next
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intersection of the classical trajectory with the section I'. The classical dynamics may also
be represented by the generating function (or action) ®(E, ¢y, ¢¢) which depends on the
energy as a parameter. The mapping is expressed explicitly as

k 5% and A e 41
The $-matrix is the analogue of the classical mapping: it maps incoming scattering states
onto outgoing scattering states of the system. We shall use this correspondence for wedges
where the dynamics is either hyperbolic or integrable.
‘When the map is hyperbolic, the trace of the semiquantal scattering matrix can be
approximated by a sum over isolated periodic orbits [19]

n,, exp{ir, {®, (E) — v,m/2}]

Tr 8§ (E) = /1Det[1 — @M, )~]]

a (42)

{¥ |nyr,=n}

where &, (E) = Z}Zl D(E, ¢;-1, ¢;) is the action of the periodic orbit y (setting ¢, = ).
The quantity v, stands for the Maslov index [20], and 3M, is the monodromy matrix. The
sum runs over all isclated primitive periodic orbits ¥ of the billiard which cross n, times
the section I', and which satisfy n,r, = n, where r, is the number of repetitions. Due to
this restriction, generally only a finite number of periodic orbits contribute to this sum for
each value of n. Inserting (42) in (37), we obtain a semiclassical approximation for the
spectral density in terms of the periodic orbits. Noting that the double sum over all integers
n and over the orbits y such that n,r,, = r may be replaced by a double sum over all orbits
and their repetitions r, we finally get -

= T (E) cxp[ir[CI),,(E) — Uy:n’,/z}]
d(E) ~ day(E) + R L , 43
(B) ~ da () [zz s } 3

where T, (E) = ;THE‘I)V (E) stands for the period of the orbit y. This formula is known
as the Gutzwiller trace formula [8]. The semiclassical approximation of the S-matrix in
the present context is identical to the semiclassical T operator which was introduced by
Bogomonly [22] who derived it using different considerations.

We can also apply the scattering approach to integrable systems. The integrability
implies ® = O(E, ¢¢ — ¢), since then [y = L. Depending on whether the difference
A = ¢ — ¢y 1s a rational multiple of 2x or not, the orbit will be periodic or quasiperiodic.
The ratio p = Ag¢/2x is called the rotation number. The S-matrix in the ¢ representation
is given by [21]

_3°0/0¢id0s

—1/2
/2 } exp[i{®(E, ¢ — ¢5) — Lvm}] “4

Ssq(Ea @i, r) = [

where v is the Maslov index for the map. From this expression, one gets the action
representation by double Legendre transformation, which gives

Ss(E, L, 1) = 8, exp[i{—AG(E, IDIi + P(E, AB(E, I)) — jvr]]. (45)
Actually, the channel quantem numbers resulting from the quantization along I' are the
integers I; — v/4 and Iy — v/4 (1ecall i = I). As Sy is diagonal in this representation, it is
straightforward to compute the phase of Det [—-Ssq (E )] and obtain the averaged integrated
density

1
EG(E) = Z 46)

1

AB(E, DI | B(E, AG(E, D) _ 3] A
[_ 27 27 4172
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where we have set [ = I; = I;. To evaluate 'IYS" (E), one can use the Poisson formula

1o +06 +o0 .
> st=[ wn Y e @n
n=—00 =3 m=—00

which introduces a new sum over integers 7. The resulting integral is solved in the saddle-
point approximation, which selects the action I such that A¢(E, I) = 2rzm/n. Notice that
the main contributions come from the rational or periodic tori, since p(J} € Q. Hence we
oet

oc =-1/2
TeSLE) = ) [~2:m—aA“'b(E’”:| exp [m {@(E, 2’;”) _ nt myvm ” (48)

m=—=20 a1 = 2

which we can now insert in (37) to obtain the semiclassical expression of the density of
states. ‘

. We may check these formulae on the integrable wedge fr + L = #/2, with the section
T along the inclined side {see appendix C). As this system is separable in the rotated
coordinates, the rotation number is given by the ratio of the periods Tz and 7j. The
Hamiltonian in the action variables reads

3me  \*° (3315‘ )2/3
H=H4+H=|—7k + 49
A (zﬂ ") 22" “
where {3 = § pzd¥ and [5 = 5= L ¢ p;d¥. The periods T¢ and 7y are casily computed

from the correspondmg actions Iy and [;. Setting & = (2v/2/3m)%2, we get

E — E3(E, 17,5)}‘/2 2ng[ac‘2f3E—I§’3:|m

R - 7 (50)

AB(B, Iy) = 2m~ [

Inverting this relation, one obtains the generating function of the Poincaré map on the
inclined boundary ¥ = 0:

27 Ag (wE)*?
o(E, 86) = [ dap) 1B, 89 = 1)
V2re)t + (sAg)?
Replacing @ from (51) in (44), we get
Ny (E) = iz [¢E - 12/3]3’2 -+ DA i (52)
M es 4 * 12msc
as expected for this wedge, and
f3s (@EY* (ne)*|ms| /2 [ { (@E)Yam  (n+my 1 }]
TS (E exp (271 - 4+ =l
PoalE) ms—oo (n2c2 + m252)5/ o v net 4 mist 4 8
(53)

Substituting this expression in the second term of the RHS of (37), we obtain a semiclassical
approximation for the oscillatory part of the density. Regrouping the terms with positive
and negative m, one obtains a real function for real energy, which reads

3 5/4 372 372 EYi2 :
dose(E) Z [ 1 @EPI e msy? [ [ @EYPnm__ @dmy 1)1
sco nzcz m2s2)7/4 ;———nzcz = =y 7 3

(3%
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For integrable systems it is also possible to derive the Berry-Tabor [23] semiclassical
expression for d(E) using EKB quantization. The EKB values for the actions are I; = r+v/4
and f» = nz+v/4. Then, transforming both the sums into integrals using Poisson sum rule,
the density reads

o0

d(EY~ Y 8(E—H[n+4v,n+ 1))
nyna==0
5] 400
~ fo dhdh > Grmll, b) $(E — HL, ) (55)
my a=—00
with

Cmam (1, 12} = exp|2miney (I — §v) + 2mimy (B — Lv)]. (56)

The integration over dly fixes Iz = L, (E, I1), and the one over d/; is solved in the saddle-
point approximation. The term with m; = m; = 0 does not oscillate and hence gives
the averaged density, for which we find E*/12msc, as before. Removing this part and
regrouping the terms pairwise with respect to m; and m», we obtain exactly the same
double sum as in (54).

This check provides further support for the formalism based on scattering, since the
starting point of both derivations are quite different. However, the computations rely on the
same methods. Except for one of the sums in (54), which comes from the expansion of the
logarithm, the sums were generated by Poisson formula. In both cases, it is the saddie-point
approximation which selects the contributions of the periodic tori with p € Q.

5. Numerical checks of the semiclassical analysis

In this section we discuss the applicability and the validity of the above semiclassical
formula. In the numerical analvsis we concentrate on the hyperbolic wedge billiard with
pL=0.

First we consider the Gutzwiller trace formula (43). It is important to take this formula
as an equation between distributions. As we cannot observe delta distributions numerically,
it will be advantageous to apply these distributions on test functions. Moreover, we have
at our disposal only a finite number of eigen-energies. Test functions with strong decaying
properties will be appropriate, because they will cancel the effect of the missing high eigen-
energies. It has been shown that such a procedure with suitable test functions may even
render the sum absolutely convergent [26]. The price for this convergence is that the delta
distributions transform into peaks of finite width. A more significant check is obtained
when one considers a weighted Fourier transform of this equation. The peaks should then
resolve the actions of the periodic orbits. It is interesting because in this way one can detect
the existence of semiclassical contributions from other kind of orbits. Broadly speaking,
equation (43) shows that the periodic orbits ‘know’ about the eigen-energies of the quantum
system. The Fourier transform tests how the quantum system ‘remembers’ the periodic
orbits. Such a representation is usually called a length spectrum, for the actions of the
Euclidean billiard are proportional to the length of the orbits.

We have seen that the angle is the only parameter influencing the dynamics. Thus, the
classical system scales with energy and we have ®,(E) = ¢, E*2, where ¢, = &, (1).
With the help of the new variable x = E3/2, we define the transformation

oo _ 2
D) = fo drcexp[—(’c "“) ]cos[(:c—fcg)x]d(fc). 7

Ax
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As d(x) is known for 0 <« < EX2, we have to chose Ak and kg so that the test function
almost vanishes outside this range.
While the transform of the exact density of energy is strmghtforward and gives

2
D(x)= exp {— ("";K"") ]cos [, — k0)x] (58)

the transform of its semiclassical approximation can be computed analytically for kg = 0
and well approximated for xg 3> Ax. For kg = 0, i.e. when most of the weight of the test
function is put around « = 0, we obtain

_ tan(Bg) (Ak)? Ak x 1+ sec(Br) Ax/m (A x
Dye(x) =0 = - 3 l:l“AKxS( > )]“ W 3 C( > )
T Ak
+ZZ x ﬁet[ﬂ- @OM,)] 2
« {cos(n;‘.,zﬂ) [C (Afc(rq;}, + x)) L (Atc(rqbzy — x))]
, sin{rv,7/2) Ak(reg, + x) Awr(re, —x)
SER(EFR) s ()] @
where
ClR)=e™ and S(z) =e™* f “dre (60)
0

The function $(z) is known as Dawson’s integral. Both C(z) and S(z) contribute to the
sum mainly around z =0, i.e. at x = £r¢,, which correspond to the action of the periodic
orbits and to their multiples. When kg 3> Ak, one can extend the integration over the whole
f-axis, since the contribution of the test function is then negligible for £ < 0. This gives

tan(ﬁg)’{ 1+ sec(ﬁR):l ZAKJEC (Axx)
dr T 2.3 3 2

1 JTAK
+ZZ w /Deql— (M, ¥l 2

Dge(X) g ar & [

y r=l
N cos(r;yn/Z) [C (Afc(rq‘;, +.x)) . (M%f_)):l (61)

Figure 7 represents the Gutzwiller trace formula (43) applied on the above test function
with x5 = O for the wedge with fg = m/3. The solid line is obtained from (58) with
the lowest 3370 eigen-energies. A reasonable choice for the width of the Gaussian is
Ak = 50. The dotted line stands for the semiclassical approximation (59) with 95 periodic
orbits. These are all periodic orbits with action ¢, < 10, except the grazing ones with
m > 13, The actions (in units of %) are marked with triangles. The agreement between
both curves is rather good in general. One remarkable feature of the wedge billiard with
B =0 and Bp > 7/4 is that each periodic orbit may be coded uniquely, using a two letter
code. Following the orbit when starting from the inclined side, one writes 2 T for each
bounce leading directly to the inclined side, and a V when the particle first hits the vertical
side before coming back to the inclined side. This prescription is believed to lead to a
different code for each periodic orbit [12]. The orbit with action ¢, = 3.26 is bouncing
exactly in the corner, and hence may be coded either TTTV or TVV. As the angle is of
the type x/n with n € N* and » is odd, this orbit is well defined, but the comresponding
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Figure 7. Action spectrum for § = 0, fr = /3, Ax = 50 and &y = 0. The full curve
represents the transform of the exact density computed from 3370 levels. The dotted curve is
obtained from 935 periodic orbits, whose actions are marked with triangles,
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Figure 8. Families tending to an orbit running along the boundary. (@) Orbit of the grazing
family VVVT? for m = 6. (&) Orbit of the grazing family VTVT™ for m = 6.

monodromy matrix does not exist [25]. Pertorbation of this orbit leads to either TTTV or
TVV, depending on the first side hit near to the commer. So one has to derive a special
saddle-point approximation which takes into account both behaviours. Following Szeredi
[12], we take half the contributions of both TTTV and TVV.

A crucial assumption for the derivation of the Gutzwiller formula is that all periodic
orbits are isolated and unstable. In the present case, we encounter only one problematic
family of grazing orbits (see figure 8) which tend to a limit orbit running along the boundary.
The contribution of such families is difficult to estimate, since oaly the first members may
be considered as isolated, but not the ones near the accumulation point. Nevertheless, it has
been observed on the stadium billiard [24] that adding only the contributions of a few first
members well reproduces the exact density, pointing out a high cancellation phenomenon
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Table 1. Asymptotic behaviour of grazing families for large n1.

VVVT™ VTVT™
&y 4/2(1 — 72 + 2m) + O(m=) 4/2(1 =2 + 2m=%) + O~
oy -1 +1

Hy log(2m? + 4m 4+ 8 + O(m™2)) log(2m® + 4m + 10 4+ O(m™2y)
vy 15 +3m 13+ 3m ‘

between pairs of periodic orbits belonging to different grazing families.

We shall now analyse, in detail, the contribution of grazing orbits for the wedge
with Bgr = #/3 [12). The code for the most obvious grazing family reads VVVT™,
where T™ means that the particle successively hits s times the inclined side without
touching the vertical one. There exists another grazing family, labelled VTVT™", which
is a good candidate to cancel the contributions of the family VVVT™ for large m. Both
families tend to the same limit orbit sliding along the boundary, bouncing in the corner,
going up vertically and coming back on the same path. Bouncing along the inclined
boundary is integrable motion. So the map T reduces to a linear transformation in
appropriate coordinates [9], and it is possible to compute analytically the exact location
and the properties of both families. The behaviour of the quantities describing both
grazing families is summarized in table 1, where the denominator [Det[1 — (3M,)"1{~1/2
is characterized by o,, the sign of the trace of the monodromy matrix 38, and u,,
the largest eigenvalue of dM,. Notice that the limit trajectory is bouncing exactly in
the vertex, where specular reflection may not be continuously defined for arbitrary angle.
Here it is well defired, since the boundary is regular near the corner and the angle
is of the type m/n. In contrast to what has been observed in [12], we did not find
infinite families for fr = 49°. We suspect that they may exist only when the limit
orbit is well defined. The Maslov index v, is extracted from numerical simulations,
using the method described in [12]. Special care has to be taken when the particle
bounces against the vertical wall with almost zero velocity. Out of the numerical data
we found the simple rule ‘add 3 for a T mapping and 5 for a V mapping’. This rule never
failed on the several hundred orbits we investigated, but we have no analytical proof of
it.

The main differance between both families is the way of inverting the direction of the
velocity near the vertical side. Orbits of the type VVVT™ hit the vertical side perpendicularly
with almost zero velocity, whereas the orbits VIVT™ bounce up vertically, slow down to
zero velocity and come back because of the potential. This causes a difference of 2 in the
Maslov index. Therefore the contributions of both families, which are very close in absolute
value for large m, take opposite signs and cancel. However, this does not mean that one
may consider the orbits near the accumulation point as isolated.

The situation appears to be similar in the stadium, where cone grazing family bounces
twice in the corner to inverse the direction of its wvelocity, while the other bounces
perpendiculatly to one side. This leads to the same difference in the Maslov indexes, and
hence to cancellation of the contributions. Notice that in both cases, the grazing families are
due to a part of the boundary along which motion is integrable, and the limit orbit bouncing
exactly in the corner is well defined. Thus it seems that the symemetry of the dynamics near
the corner plays a central role in the existence of infinite families and in the mechanism of
cancellation.

The point of accumulation of grazing orbits stands at x = 44/2 &~ 5.65. The excellent



Quantization of Hamiltonians in two dimensions 95

30.0 y T T T

20,0 | N =

10.0

0.0

Dx)

-10.0

<200 r N -

200 A A AA L ABM AN Ammmma@ﬁ,
“o0 2.0 40 6.0 8.0 100

Figure 9. Action specirum for §p = 0, fr = #/3, Ak = 50 and ko = 150, The foll curve
represents the transform of the exact density computed from 3370 levels, The dowed curve
is obtained from the same 95 penodw. orbits as before. The actions of the periodic orbits are
marked with triangles.

matching between the curves around that point, despite the reduced number of members
of the grazing families, is due to the above-described cancellation phenomenon. The other
differences might originate from ferms which bave been neglected in the approximation
(42). One cannot exclude a possible calculation error in the Maslov index, because of the
difficulties involved in the numerical evaluation of some orbits. Such errors are difficult to
detect when several orbits have nearly the same action.

In figure 9 we set ko = 150 and used exactly the same data as before. The agreement
between the curves improves significantly. This demonstrates the importance of the
choice of the test function. Centring the Gaussian away from zero takes advantage of
more eigen-energies, since the density of levels increases with x. Moreover, as (43) is
expected to hold in the semiclassical regime, it is natural to shift the weight to higher
energies.

The Gutzwiller trace formula makes use of all periodic orbits of the classical system.
Hence it is very difficult to identify the contributions of the various periodic orbits from
the rest. In ouwr derivation we obtained this formula as a sum over the traces of the
powers of §,;. We can therefore check the semiclassical approximation in more detail
by considering the approximation (42) of TrSj, for each n separately. For the wedge
billiard, the period n, represents the number of collisions with the vertical boundary, and
hence corresponds to the number of Vs contained in the code of the orbit. Because
of the potential, each periodic orbit has to hit the vertical side at least once, so that
each code contains at least one V. Thus every periodic orbit of the system confributes
to one of the powers of S. Here again we are confronted with the problem of the
contributions of the grazing families. For fg = /3, all members of the families VIVT"

and VVVT™ have to be included in the evaluation of Tr S2 and Tr Ssq, respectively. Here
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the previous mechanism of cancellation does not apply, since both families contribute
to separate quantities. However, as the Maslov index steadily increases by 3 for each
member of the same family, contributions from consecutive members (considered here
as separated) will have different phases so that the whole sum will converge at the
end.

For the same reasons discussed above, we calculate a weighted Fourier transform of
Tr Sg (e

& K — ko \?
T™(x) = f de exp[— (E—o) ]cxp [ikx] Tr S™ (k). (62)
0
The semiclassical approximations with xo = 0 and &g > Ax read

n _ Rty — —_ E
T () eo=0 = Z Beti= GILT ] Ak exp [ ir, v, 2]

v in,ry=rl
x [“/T’?c (_______A"("r‘é’r _x)) +iS (——————A"(’V‘;V = x))} (63)
A
T ~ L A
oo (X ko> e ‘Hg:n} ﬁDet[]l — (M, )7 ]| 7
x exp [iry (¢ — 3v,7) ~ ikpx] C(2 Ak (r, 0, — x)). (64)

We shall present resulis which are calculated for the semiclassical domain &y > Ax.
Figure 10 represents the real part of the transform for # = 1 and xy = 150. The full
curve stands for T1(x). It is obtained from the discrete Fourier transform of 900 values
with x between 0 and 332. The dotted line represents T (x)|uwac- It is computed from
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Figure 10. Real part of the action spectrum of Tr Sy for fr = 0, fr = =/3, Ak = 50 and
x,p = 150. The full curve represents the transform of the semiguantal expression. The dotted
line is obtained from the periodic orbits bouncing only once against the vertical wall, The
contributions due to the onset of new channels are marked with diarnonds.
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Figure 11. Real part of the action spectrurn of ’I‘rSf'q for fp = 0, fr = n/3, Ax = 50
and kg = 150. The full curve represents the transform of the semiquantal expression. The
datted curve is obtained from two periodic orbits bouncing twice against the vertical wall. The
contributions due to the onset of new channels are marked with diamonds.,

all periodic orbits bouncing only one time against the vertical wall. The actions of these
four orbits are marked with triangles. The semiclassical approximation perfectly matches
the exact curve around the periodic orbits. For the same reason as before, we take half the
contribution of the orbit TTTV. Here the process is obvious, since TVV does not coniribute
to this sum. Apart from the large peaks which appear at the location of periodic orbits,
there are also other peaks at multiples of 44/2/3 =~ 1.88 (marked with diamonds). We
have made certain that these peaks are due to the periodicity induced by the onset of new
thresholds. There are other factors which cannot be accounted for by either the simple
assumption about the onset of thresholds or by the semiclassical theory. They are yet
unexplained.

In figures 11 and 12 we plot T%(x) and TZ(x)|xepae On a range including all
periodic orbits bouncing twice against the vertical wail. The dotted line results from
five isolated periodic orbits and from the first 10 members of the family VIVT™". The
semiclassical approximation reproduces the behaviowr of T2(x) near the accumulation
point at x ~ 5.65 well, pointing out the proper mechanism of cancellation of this
family.

The traces of the powers of S give the semiclassical approximation of the oscillatory
part of d(E). It is also easy to check the formula for the averaged density via (40}, which
gives an approximation of the integrated averaged density as a quantity depending on the
S. The full curve in figure 13 represents the exact integrated density N (E) for the range of
energy where A(E) = 40 and S = /3. The dotted curve is computed from the variation
of the phase of Det{(—5) divided by 27 and stands for the semiclassical approximation of
Nav(E).
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Figure 12. Real part of the action spectrum of Trqu for fp = 0, fr = m/3, Ax = 50 and
kp = 150. The full curve represents the transform of the semiquantal expression. The dotted
curve is obtained from the periodic orbits bouncing twice against the vertical wall and the lowest
10 members of the grazing family VIVT™. The contributions due to the onset of new channels
are marked with diamonds.
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Figure 13. Integrated density of energy for AL = 0, fa = n/3 and E such that A(E} = 40.
The full corve represents the exact integrated density N(E). The dotted line is obtained from
the phase of Det(—S) divided by 2w and stands for the semiclassical approximation of Nay(E).
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6. Discussion

In this paper we have extended the scattering approach to quantization to include not only
billiards, but also smooth Hamiltonians of the type (1). The method was applied to the
wedge billiard which falls into the class of ‘inclined billiards’ where the motion between
successive bounces is not free. We have shown that the general formalism can also be
applied to the present system.

The scattering approach has a few advantages: the quantization condition is formulated
as a secular equation which requires that, at an eigen-energy, the spectrum of the extended
S-matrix includes the value 1. Restricting the S-matrix to the space of opened channels,
and proceeding with the semiclassical approximation, we were able to derive not only the
Gutzwiiler trace formula for chaotic and integrable systems, but also to calculate the leading
terms for the smooth level density. The fundamental step in the semiclassical approximation
is the calculation of Tr " in terms of periodic orbits of the classical Poincaré scattering
map. We could test the accuracy of this approximation numerically, and found a very good
agreement. The scattering approach is a very convenient numerical tocl. In the present work
we were able to calculate thousands of eigenvalues of the wedge billiard with a very high
accuracy. Using this database, we couid check various aspects of the semiclassical theory,
which were not accessible to previous authors who had to perform their analysis in terms
of numerical spectra which are poorer both in accuracy and number of levels. We could,
for example, test the role of families of periodic orbits which converge to a limit orbit.

There are a few points in the scattering approach which need further elucidation. The
first has to do with the condition which is the basis of the method, namely, that an eigenvalue
occurs whenever the extended S(E)-matrix has 1 as an eigenvalue, This is a condition which
is well defined for any finite truncation of the extended S-matrix, but may be problematic
when the full S operator is considered. A difficulty of this sort occurs in the alternative
method which uses the exterior—interior duality for the quantization of billiards [3]. There it
was shown by Eckmann and Pillet [7] that the condition for quantization has to be understood
as a limit, so that as E 7 E, one eigenphase of the S-mattix approaches 1 from above. In
the present variant of the scattering approach, other complications may arise. The extended
S-matrix is not unitary, and at threshold energies it is not even analytic in the energy E.
We observed numerically that, between thresholds, the spectrum of the extended S-matrix
is composed of A eigenvalues which are in the close vicinity of the unit circle, and the rest,
which are concentrated near 0. As a threshold is approached, the absolute value of one of
the eigenvalues near O starts to increase and at the threshold energy it reaches the unit circle
through the vicinity of 1. This occurrence of the value 1 in the spectrum does not signal the
appearance of a new eigen-energy of the system. Rather, it is a consequence of the opening
of a new channel. In figure 14 we trace the dependence of the eigenvalues of the S-matrix
near a threshold. We are not able to provide an explanation for the observed behaviour, but
is seems to be universal (sce, for example, a similar figure in [6]), and therefore essential
for the complete nnderstanding of the scattering approach.

Because of lack of space, we did not report in this paper about some of cur numericai
and analytical studies which relate to the spectral statistics, spectral correlations and the
distribution of spectral ‘velocities’ 9E,/38. These distributions and correlations are now
studied with applications to atomic and mesoscopic physics. The extensive data set that we
built for the wedge billiard offers an excelient basis for such statistical studies, which will
be reported in a subsequent publication.
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Figure 14. Parametric representations of the 25 first eigenphases e as a function of the energy
for AL = 0 and Sr = m/3 near a threshold. The energy parameter mans from 10 units of the
mean level spacing below the 21st threshold to 10 units above. {(a) Energy interval below the
threshold, The energy difference between the dots is chosen to decrease exponentially. (&)
Energy interval above the threshold. Here the energy difference between the circles increases
exponentially.
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Appendix A. Symmetries of the S-matrix

In this appendix, we show the consequences of invariance with respect to time inversion and
reality of the potential on the structure of the scattering matrix. These relations may also be
derived by combining other equations {6], but their origin lies in the above symmetry. They
provide an easy proof of the symmetry of the full §-matrix and are useful for verifying the
accuracy of the numerical computations.

To improve the formulation of the results, we will use the notation

Seo Soo
S = Al
(Sco Sw) S

where the indexes o and ¢ of the submatrices stand respectively for open and closed channels.
This notation has to be taken with some care, since (ST)oc = (Seo)T.

As the potential is real and time-independent, ¢ and y* are both solutions of the
same Schridinger equation. Choosing a wavefiinction v as a linear combination of the
1, involving no incoming closed modes and decomposing it into sums of propagating and
non-propagating modes, we obtain

A1 2 1—1 o
E wn § e ""xn + 3 b= g+ Y b o
Y= Ha Ya=) a ¢y} 2 i J/C—ze & (y) B, ] me & (y)

(A2)

where «; = ./TE — E;|. The coefficients of the outgoing modes satisfy & = ZL, GpSar.
The complex conjugate then reads
[~

A
yr=3 an = be **'*¢;<y)+2a J_ MG () + ) ib} \/_-e"*xmy)

n=1 I=1 n=1 I=A+1
(A3)

As a solution of the scattering system, the coefficients of the outgoing modes may alsc be
related to the ingoing ones via the S-matrix

A
a, = b;‘SM for n<A (Ad)

n

A
Z . for I>A. (AS5)

nm=1
Inserting the definition of &; in both relations, and noting that they are valid for any choice
of the coefficients a,, we obtain

A
>SSy =8 for m,m<A (A6)

A
iS5 =3 SuS foor ngA and > A. (A7)
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Similarly, choosing ¥ with no incoming open modes gives

Z ® S = iS5 —8,) = 2Im[Sy] for n,l> A. (A8)
m=1

Using compact notation, these relations read
Seo * S:u = S:o - Sgo =-1 (A9)
Sao * Sae = —180¢ (A10)
Seo = St = 1(5% — S,) = 2Im[Sec . (Al1)

The divergence of the current vanishes for stationary states of the Schrédinger equation
with real potential. Thus the flux F{x) through the surface delimited by the right (left) part
of the system and the section I" at x = constant must also vanish. The only part which
contributes is the section I, so that

1 [ :
Hﬂ=ﬁj'dﬂW%w—w@wy (A12)

Requiring ®(x) to be zero successively for wavefunctions ¢ with no incoming closed
modes, no incoming open modes and finally both incoming closed and open modes yields

Sy St =8t -8,=1 (A13)
S-Sl = suc (Al14)
ST =i(sh, - 5.). (A15)

Comparing pairwise both sets of equations, we get § = ST. Thus the symmetry of the total
S-matrix is a consequence of the fact that the potential is time-independent and real.

Appendix B. One-dimensional quantum bouncer

The differential equation and boundary condition for the wavefunction ¢(x) of a one-
dimensional particle confined between a hard wall and a gravitational potential reads

¢ 2m’g ( E .
?d?-'- T (@—x)qi——O if x>0
=10 if x<£0.

Using the variable substitution z = (2m?g/RH)3(x — E,/mg), the differential equation
transforms into (see [27])

(B1)

L-w=o (®B2)

As a second-order differential equation, this latter admits two lnear independent solutions
Ai(z) and Bi(z) which are called Airy functions. The wavefunction must be bounded for
x = 400, thus Bi(z) has to be excluded. The solutions then take the form

2 1/3
$(x) = ¢ Al [(2’"23) (x - ﬁ)} (B3)
h mg

with ¢ the normalization constant. Setting ¢(0) = 0 quantizes the energy, which then takes
the values

1/3
2mcg -
E,=— ( = ) mgin for neN (B4)
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where z,, is the nth zero of Ai(z). It is straightforward to compute the normalization constant
Cn:

2m? g =13 heo )
6% = & ( i ) JESCE
h 2

2m2 -1/3 )
= ( g) |2A(z) — AP

ﬁl
2m2 =173 . '
=c ( hz‘g) Ai?%(z,). (B5)

Thus the orthonormal set of eigenfunctions reads
2m2g\Y¢ 1 2m2g\'/? E, _ 7
= - Al -— fi e ", B6
P (rzz) AT(z.) ‘[( ﬁz) (" mg)] o (B6)

Appendix C. Integrable case with the section on the inclined boundary

Here we discuss the integrable case f + Bz = m/2, assuming that the section T is taken on
the side ¥ = 0 (see figure 8). The potential in the waveguide is defined by the value of the
original potential on the X-axis. Hence it is also linear, but directed towards the -direction.
The channel eigenfunctions gb,,(x) and elcremencrgles E are taken from appendix B with
& = gcos(fr). The scattering functions ¥~ are decomposed on the basis

& = Ai{Qc) P57 + 2, ] AI[26)13F — VP E + g, )77 with r eN*.  (Cl)

The matrix S- = —1, and SR is determined by the matching condition at ¥ = 0.
Computation of I}, (E) at the eigen-energies E,y = —27Y3(c*3z,, + s%*z;) yields
I (Em)=0  VneN- (C2)
Thus the kernel of [T 1 (E,,,;)]T admits the expected non-trivial solution
by #0

o Z0 for idm } = V() =Fmy). (€3)
Notice that, although it would give the correct result, the choice I' on x = 0 is inappropriate
for this investigation. This shows that for symmetry reasons it may be advantageous to take

the section at different places.

Note added. A simitar approach in terms of propagators has been developed recently by Prosen [28].
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